cryogenics

cryogenics
/kruy'euh jen"iks/, n. (used with a sing. v.)
the branch of physics that deals with very low temperatures.
[1955-60; CRYO- + -GENICS]

* * *

Study and use of low-temperature phenomena.

The cryogenic temperature range is from -238°F (-150°C) to absolute zero. At low temperatures, matter has unusual properties. Substances that are naturally gases can be liquefied at low temperatures, and metals lose electrical resistance as they get colder (see superconductivity). Cryogenics dates from 1877, when oxygen was first cooled to the point at which it became a liquid (-297°F, or -183°C); superconductivity was discovered in 1911. Applications of cryogenics include the storage and transport of liquefied gases, food preservation, cryosurgery, rocket fuels, and superconducting electromagnets.

* * *

      production and application of low-temperature phenomena.

      The cryogenic temperature range has been defined as from -150° C (-238° F) to absolute zero (-273° C or -460° F), the temperature at which molecular motion comes as close as theoretically possible to ceasing completely. Cryogenic temperatures are usually described in the absolute or Kelvin scale, in which absolute zero is written as 0 K, without a degree sign. Conversion from the Celsius to the Kelvin scale can be done by adding 273 to the Celsius scale.

      Cryogenic temperatures are considerably lower than those encountered in ordinary physical processes. At these extreme conditions, such properties of materials as strength, thermal conductivity, ductility, and electrical resistance are altered in ways of both theoretical and commercial importance. Because heat is created by the random motion of molecules, materials at cryogenic temperatures are as close to a static and highly ordered state as is possible.

      Cryogenics had its beginning in 1877, the year that oxygen was first cooled to the point at which it became a liquid (-183° C, 90 K). Since then, the theoretical development of cryogenics has been connected to the growth in capability of refrigeration systems. In 1895, when it had become possible to reach temperatures as low as 40 K, air was liquefied and separated into its major components; in 1908 helium was liquefied (4.2 K). Three years later, the propensity of many supercooled metals to lose all resistance to electricity—the phenomenon known as superconductivity—was discovered. By the 1920s and 1930s temperatures close to absolute zero were reached, and by 1960 laboratories could produce temperatures of 0.000001 K, a millionth of a degree Kelvin above absolute zero.

      Temperatures below 3 K are primarily used for laboratory work, particularly research into the properties of helium. Helium liquefies at 4.2 K, becoming what is known as helium I. At 2.19 K, however, it abruptly becomes helium II, a liquid with such low viscosity that it can literally crawl up the side of a glass and flow through microscopic holes too small to permit the passage of ordinary liquids, including helium I. (Helium I and helium II are, of course, chemically identical.) This property is known as superfluidity.

      The most important commercial application of cryogenic gas liquefaction techniques is the storage and transportation of liquefied natural gas (LNG), a mixture largely composed of methane, ethane, and other combustible gases. Natural gas is liquefied at 110 K, causing it to contract to 1/600th of its volume at room temperature and making it sufficiently compact for swift transport in specially insulated tankers.

      Very low temperatures are also used for preserving food simply and inexpensively. Produce is placed in a sealed tank and sprayed with liquid nitrogen. The nitrogen immediately vaporizes, absorbing the heat content of the produce.

      In cryomedicine a low-temperature scalpel or probe can be used to freeze unhealthy tissue. The resulting dead cells are then removed through normal bodily processes. The advantage to this method is that freezing the tissue rather than cutting it produces less bleeding. A scalpel cooled by liquid nitrogen is used in cryosurgery; it has proved successful in removing tonsils, hemorrhoids, warts, cataracts, and some tumours. In addition, thousands of patients have been treated for Parkinson's disease (Parkinson disease) by freezing the small areas of the brain believed to be responsible for the problem.

      The application of cryogenics has also extended to space vehicles. In 1981 the U.S. space shuttle “Columbia” was launched with the aid of liquid hydrogen/liquid oxygen propellants.

      Of the special properties of materials cooled to extreme temperatures superconductivity is the most important. Its chief application has been in the construction of superconducting electromagnets for particle accelerators. These large research facilities require such powerful magnetic fields that conventional electromagnets could be melted by the currents required to generate the fields. Liquid helium cools the cable through which the currents flow to about 4 K, allowing much stronger currents to flow without generating heat by resistance.

* * *


Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • cryogenics — ► PLURAL NOUN (treated as sing. ) ▪ the branch of physics concerned with the production and effects of very low temperatures. DERIVATIVES cryogenic adjective. ORIGIN from Greek kruos frost …   English terms dictionary

  • cryogenics — [kri΄ō jen′iks, krī΄əjen′iks] n. [ CRYOGEN + ICS] the science that deals with the production of very low temperatures and their effect on the properties of matter cryogenic adj …   English World dictionary

  • Cryogenics — For cryopreservation/resuscitation, see Cryonics. For the band, see Cryogenic (band). In physics, cryogenics is the study of the production of very low temperature (below −150 °C, −238 °F or 123 K) and the behavior of materials at those… …   Wikipedia

  • cryogenics — [[t]kra͟ɪoʊʤe̱nɪks[/t]] N PLURAL (The form cryogenic is used as a modifier.) Cryogenics is a branch of physics that studies what happens to things at extremely low temperatures …   English dictionary

  • cryogenics — kriogeninė technika statusas T sritis Energetika apibrėžtis Žemos (<120 °C) temperatūros gavimo ir naudojimo technika. Kriogeninės technikos priemonėmis skystinamos dujos; jos išskiriamos iš mišinių, sudaroma superlaidumo būsena ir t.t… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • cryogenics — noun plural but singular in construction Date: circa 1934 a branch of physics that deals with the production and effects of very low temperatures …   New Collegiate Dictionary

  • cryogenics — noun a) The science and technology of the production of very low temperatures. b) The scientific study of low temperature phenomena. See Also: cryo , genic, ics …   Wiktionary

  • cryogenics — The science concerned with the production and effects of very low temperatures, particularly temperatures in the range of liquid helium (<4.25 K). [cryo + G. gen, producing] * * * cryo·gen·ics iks n pl but sing or pl in constr a branch of… …   Medical dictionary

  • cryogenics — Synonyms and related words: Newtonian physics, absolute zero, acoustics, adiabatic absorption, adiabatic demagnetization, adiabatic expansion, aerophysics, air conditioning, air cooling, algidity, applied physics, astrophysics, basic conductor… …   Moby Thesaurus

  • cryogenics — cry|o|gen|ics [ˌkraıəˈdʒenıks] n [U] [Date: 1900 2000; Origin: cryogen substance producing low temperatures (19 21 centuries), from Greek kryo (from kryos very cold ) + English gen producing (from Greek genes born )] the scientific study of very… …   Dictionary of contemporary English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”