Neyman, Jerzy

Neyman, Jerzy

▪ Russian-American statistician
born April 16, 1894, Bendery, Russia
died Aug. 5, 1981, Oakland, Calif., U.S.

      Russian–U.S. mathematician and statistician who helped to establish the statistical theory of hypothesis testing. Neyman was a principal founder of modern theoretical statistics. In 1968 he was awarded the prestigious National Medal of Science.

      After serving as a lecturer at the Institute of Technology, Kharkov, in the Ukraine, from 1917 to 1921, Neyman was appointed statistician of the Institute of Agriculture at Bydgoszcz, Pol. In 1923 he became a lecturer at the College of Agriculture, Warsaw, and joined the faculty of the University of Warsaw in 1928. He served on the staff of University College, London, from 1934 to 1938, and then emigrated to the United States, where he joined the faculty of the University of California at Berkeley, becoming chairman of a new department of statistics in 1955. There he built, with the help of a growing number of statisticians and mathematicians who studied under him, what became known as a leading world centre for mathematical statistics. A highly successful series of symposia on probability and statistics were carried out under his guidance.

      Neyman's work in mathematical statistics, which includes theories of estimation and of testing hypotheses, has found wide application in genetics, medical diagnosis, astronomy, meteorology, and agricultural experimentation. He was noted especially for combining theory and its applications in his thinking.

* * *

Universalium. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Jerzy Neyman — Born April 16, 1894(1894 04 16) Bendery, Bessarabia, Imperial Russia Died August 5, 1981(1981 …   Wikipedia

  • Jerzy — Pronunciation [ˈjɛʐɨ][1] Gender masculine Language(s) Polish Other names …   Wikipedia

  • Jerzy Neyman — (16 avril 1894 5 août 1981) est considéré comme un des grands fondateurs de la statistique moderne. Il a contribué très largement à la théorie des probabilités, vérifiant les hypothèses, les intervalles de confiance et… …   Wikipédia en Français

  • Jerzy Neyman — (* 16. April 1894 in Bendery, Moldawien; † 5. August 1981 in Oakland, Kalifornien) war ein polnischer Mathematiker und Autor wichtiger statistischer Bücher. Das Neyman Pearson Lemma ist nach ihm benannt. Neyman in Warschau 1973 …   Deutsch Wikipedia

  • Jerzy Neyman — Jerzy Neyman(16 de abril de 1894, en Moldavia – 5 de agosto de 1981, California) fue un matemático polaco. Fue el segundo de cuatro hijos de Czesław Spława Neyman y Kazimiera Lutosławska. Publicó muchos libros relacionados a experimentos y… …   Wikipedia Español

  • Neyman — ist der Familienname folgender Personen: Benny Neyman (1951–2008), niederländischer Sänger Jerzy Neyman (1894–1981), polnischer Mathematiker Jozef Neyman (1764–1835), polnischer Publizist Lech Neyman (1908–1948), polnischer Politiker Siehe auch… …   Deutsch Wikipedia

  • Neyman-Pearson-Lemma — Das Neyman Pearson Lemma ist ein Satz der mathematischen Statistik, der eine Optimalitätsaussage über die Konstruktion eines Hypothesentests macht. Gegenstand des Neyman Pearson Lemmas ist das denkbar einfachste Szenario eines Hypothesentests:… …   Deutsch Wikipedia

  • Neyman–Pearson lemma — In statistics, the Neyman Pearson lemma, named after Jerzy Neyman and Egon Pearson, states that when performing a hypothesis test between two point hypotheses H0: θ = θ0 and H1: θ = θ1, then the likelihood ratio test …   Wikipedia

  • Neyman-Pearson lemma — In statistics, the Neyman Pearson lemma states that when performing a hypothesis test between two point hypotheses H 0: θ = θ 0 and H 1: θ = θ 1, then the likelihood ratio test which rejects H 0 in favour of H 1 when:Lambda(x)=frac{ L( heta {0}… …   Wikipedia

  • Lemme De Neyman-Pearson — En statistiques, le Lemme de Neyman Pearson stipule que lorsque l on effectue un test d hypothèse entre deux hypothèses H0: θ=θ0 et H1: θ=θ1, alors le test du rapport de vraisemblance qui rejette H0 en faveur de H1 lorsque où est le… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”