Leeuwenhoek, Antonie van

Leeuwenhoek, Antonie van
born Oct. 24, 1632, Delft, Neth.
died Aug. 26, 1723, Delft

Dutch microscopist.

In his youth he was apprenticed to a draper; a later civil position allowed him to devote time to his hobby: grinding lenses and using them to study tiny objects. With his simple microscopes he observed protozoa in rainwater and pond and well water and bacteria in the human mouth and intestine. He also discovered blood corpuscles, capillaries, and the structure of muscles and nerves, and in 1677 he first described the spermatozoa of insects, dogs, and humans. How he enhanced the power of his lenses sufficiently to achieve such results remains a secret. His research on lower animals argued against the doctrine of spontaneous generation, and his observations helped lay the foundations for the sciences of bacteriology and protozoology.

Antonie van Leeuwenhoek, detail of a portrait by Jan Verkolje; in the Rijksmuseum, Amsterdam.

Courtesy of the Rijksmuseum, Amsterdam

* * *

▪ Dutch scientist

born Oct. 24, 1632, Delft, Neth.
died Aug. 26, 1723, Delft
 Dutch microscopist who was the first to observe bacteria and protozoa. His researches on lower animals refuted the doctrine of spontaneous generation, and his observations helped lay the foundations for the sciences of bacteriology and protozoology.

      Little is known of Leeuwenhoek's early life. When his stepfather died in 1648, he was sent to Amsterdam to become an apprentice to a linendraper. Returning to Delft when he was 20, he established himself as a draper and haberdasher. In 1660 he obtained a position as chamberlain to the sheriffs of Delft. His income was thus secure and sufficient enough to enable him to devote much of his time to his all-absorbing hobby, that of grinding lenses (lens) and using them to study tiny objects.

      Leeuwenhoek made microscopes consisting of a single, high-quality lens of very short focal length; at the time, such simple microscopes were preferable to the compound microscope, which increased the problem of chromatic aberration. Although Leeuwenhoek's studies lacked the organization of formal scientific research, his powers of careful observation enabled him to make discoveries of fundamental importance. In 1674 he began to observe bacteria and protozoa, his “very little animalcules,” which he was able to isolate from different sources, such as rainwater, pond and well water, and the human mouth and intestine, and he calculated their sizes.

      In 1677 he described for the first time the spermatozoa (sperm) from insects, dogs, and man, though Stephen Hamm probably was a codiscoverer. Leeuwenhoek studied the structure of the optic lens, striations in muscles, the mouthparts of insects, and the fine structure of plants and discovered parthenogenesis in aphids. In 1680 he noticed that yeasts consist of minute globular particles. He extended Marcello Malpighi's demonstration in 1660 of the blood capillaries by giving (in 1684) the first accurate description of red blood cells (erythrocyte). In his observations on rotifers in 1702, Leeuwenhoek remarked that “in all falling rain, carried from gutters into water-butts, animalcules are to be found; and that in all kinds of water, standing in the open air, animalcules can turn up. For these animalcules can be carried over by the wind, along with the bits of dust floating in the air.”

      A friend of Leeuwenhoek put him in touch with the Royal Society of England, to which, from 1673 until 1723, he communicated by means of informal letters most of his discoveries and to which he was elected a fellow in 1680. His discoveries were for the most part made public in the society's Philosophical Transactions. The first representation of bacteria is to be found in a drawing by Leeuwenhoek in that publication in 1683.

      His researches on the life histories of various low forms of animal life were in opposition to the doctrine that they could be produced spontaneously or (spontaneous generation) bred from corruption. Thus, he showed that the weevils (weevil) of granaries (in his time commonly supposed to be bred from wheat as well as in it) are really grubs hatched from eggs deposited by winged insects. His letter on the flea, in which he not only described its structure but traced out the whole history of its metamorphosis, is of great interest, not so much for the exactness of his observations as for an illustration of his opposition to the spontaneous generation of many lower organisms, such as “this minute and despised creature.” Some theorists asserted that the flea was produced from sand, others from dust or the like, but Leeuwenhoek proved that it bred in the regular way of winged insects.

      Leeuwenhoek also carefully studied the history of the ant and was the first to show that what had been commonly reputed to be ants' eggs were really their pupae, containing the perfect insect nearly ready for emergence, and that the true eggs were much smaller and gave origin to maggots, or larvae. He argued that the sea mussel and other shellfish were not generated out of sand found at the seashore or mud in the beds of rivers at low water but from spawn, by the regular course of generation. He maintained the same to be true of the freshwater mussel, whose embryos he examined so carefully that he was able to observe how they were consumed by “animalcules,” many of which, according to his description, must have included ciliates in conjugation, flagellates, and the Vorticella. Similarly, he investigated the generation of eels, which were at that time supposed to be produced from dew without the ordinary process of generation.

      The dramatic nature of his discoveries made him world famous, and he was visited by many notables—including Peter I the Great of Russia, James II of England, and Frederick II the Great of Prussia.

      Leeuwenhoek's methods of microscopy (microscope), which he kept secret, remain something of a mystery. During his lifetime he ground more than 400 lenses, most of which were very small—some no larger than a pinhead—and usually mounted them between two thin brass plates, riveted together. A large sample of these lenses, bequeathed to the Royal Society, were found to have magnifying powers of between 50 and, at the most, 300 times. In order to observe phenomena as small as bacteria, Leeuwenhoek must have employed some form of oblique illumination, or other technique, for enhancing the effectiveness of the lens, but this method he would not reveal. Leeuwenhoek continued his work almost to the end of his long life of 90 years.

      Leeuwenhoek's contributions to the Philosophical Transactions amounted to 375 and those to the Memoirs of the Paris Academy of Sciences to 27. Two collections of his works appeared during his life, one in Dutch (1685–1718) and the other in Latin (1715–22); a selection was translated by S. Hoole, The Select Works of A. van Leeuwenhoek (1798–1807).

Additional Reading
Clifford Dobell, Antony van Leeuwenhoek and His “Little Animals” (1932, reissued 1960); and Brian J. Ford, Single Lens: The Story of the Simple Microscope (1985).

* * *

Universalium. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Leeuwenhoek, Antonie van — (24 oct. 1632, Delft, Países Bajos–26 ago. 1723, Delft). Microscopista holandés. En su juventud fue aprendiz de un pañero. Un empleo público posterior le permitió dedicarse a su afición: pulir lentes y usarlos para observar objetos diminutos. Con …   Enciclopedia Universal

  • Antonie van Leeuwenhoek — Infobox Person name = Antonie van Leeuwenhoek image size = 225px caption = birth name = Thonius Philips van Leeuwenhoek birth date = birth date|1632|10|24 birth place = Delft, Netherlands death date = death date and age|1723|08|30|1632|10|24… …   Wikipedia

  • Antonie van Leeuwenhoek — Antoni van Leeuwenhoek Antoni van Leeuwenhoek Antoine van Leeuwenhoek (ou Antoni ou Anthonie) (24 octobre 1632, Delft – 27 août 1723, Delft) est un commerçant et savant néerlandais. Van Leeuwenhoek est surtout connu …   Wikipédia en Français

  • Antonie van Leeuwenhoek — Antoni van Leeuwenhoek Mikroskopischer Schnitt durch ein einjähriges Eschenholz, erstellt von Antoni van Leeuwenhoek. Antoni van Leeuwenhoek [ …   Deutsch Wikipedia

  • LEEUWENHOEK, Antoni (Anton, Antonie) van — (1632–1723)    Scientist. Van Leeuwenhoek served as a minor civil servant in his native city Delft. He is the inventor of the microscope, with which he discovered microorganisms such as bacteria and spermatozoa. For half a century, he described… …   Historical Dictionary of the Netherlands

  • Van — /van/; for 1, 2 also Turk. /vahn/, n. 1. Lake, a salt lake in E Turkey. 1454 sq. mi. (3766 sq. km). 2. a town on this lake. 88,597. 3. a male given name. * * * I City (pop., 1997: 226,965), eastern Turkey, on the eastern shore of Lake Van. The… …   Universalium

  • van — van1 /van/, n. 1. the foremost or front division of an army, a fleet, or any group leading an advance or in position to lead an advance. 2. those who are in the forefront of a movement or the like. 3. the forefront in any movement, course of… …   Universalium

  • Van — En la mitología escandinava, los vanes son dioses de la fecundidad y riqueza, en contraposición a los ases. Muy populares entre los campesinos. Son divinidades pacifistas, de fuerte caracterización sexual y gran cohesión de grupo. Al principio de …   Enciclopedia Universal

  • Antonie — ist ein weiblicher Vorname, kommt aber auch als männlicher Vorname vor (meist als Antoni). Herkunft und Bedeutung des Namens Antonie ist die weibliche Form zu Anton. Der Name kommt aus dem Lateinischen und bedeutet die vorn Stehende oder die… …   Deutsch Wikipedia

  • Van Leeuwenhoek — (Antonie) (1632 1723) biologiste néerlandais. Autodidacte, il fabriqua des microscopes grâce auxquels il découvrit notamment, agrandis 300 fois, les spermatozoïdes …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”