- silver
-
—silverer, n. —silverish, adj. —silverless, adj. —silverlike, adj. —silverness, n./sil"veuhr/, n.1. Chem. a white, ductile metallic element, used for making mirrors, coins, ornaments, table utensils, photographic chemicals, conductors, etc. Symbol: Ag; at. wt.: 107.870; at. no.: 47; sp. gr.: 10.5 at 20°C.2. coin made of this metal; specie; money: a handful of silver.3. this metal as a commodity or considered as a currency standard.4. table articles made of or plated with silver, including flatware and hollowware.5. any flatware: The kitchen silver is of stainless steel.6. something resembling this metal in color, luster, etc.7. a lustrous grayish white or whitish gray, or the color of the metal: the silver of the leaves.8. any of the silver halides used for photographic purposes, as silver bromide, silver chloride, or silver iodide.9. See silver medal.adj.10. consisting of, made of, or plated with silver.11. of or pertaining to silver.12. producing or yielding silver.13. resembling silver; silvery: the silver moon.14. clear and soft: silver sounds.15. eloquent; persuasive: a silver tongue.16. urging the use of silver as a currency standard: silver economists.17. indicating the twenty-fifth event of a series, as a wedding anniversary. See table under wedding anniversary.18. having the color silver: a silver dress.v.t.19. to coat with silver or some silverlike substance.20. to give a silvery color to.v.i.21. to become a silvery color.[bef. 900; (n. and adj.) ME silver(e), selver(e), selfer, OE siolfor (orig. n.); c. G Silber, ON silfr, Goth silubr, akin to Serbo-Croatian srèbro, Russ serebró, Lith sidãbras; (v.) late ME silveren, deriv. of the n.]
* * *
IMetallic chemical element, one of the transition elements, chemical symbol Ag, atomic number 47.It is a white, lustrous precious metal, valued for its beauty. It is also valued for its electrical conductivity, which is the highest of any metal. Between copper and gold in their common group of the periodic table, it is intermediate between them in many properties. Widely distributed in nature in small amounts, as the native metal and in ores, it is usually recovered as a by-product of copper and lead production. Its use in bullion and coins was overtaken in the 1960s by demand for industrial purposes, especially photography. It is also used in printed electrical circuits, electronic conductors, and contacts. It is the catalyst for converting ethylene to ethylene oxide, the precursor of many organic chemicals. Its use in alloys in sterling (92.5% silver, 7.5% copper) and plated silverware, ornaments, and jewelry remains important; yellow gold used in jewelry is typically 25% silver, and gold dental alloys are about 10% silver. Silver dental fillings are an amalgam of silver and mercury. Silver in compounds, the most important of which is silver nitrate, has valence 1. Its chloride, bromide, and iodide are used in photography and its iodide in cloud seeding.Dendritic (branching) silver from OntarioBy courtesy of Joseph and Helen Guetterman Collection; photograph, John H. GerardII(as used in expressions)Silver HoraceSilvers Phil* * *
Introductionchemical element, a white, lustrous metal valued for its decorative beauty and electrical conductivity. Silver is located in Group 11 (Ib) and Period 5 of the periodic table, between copper (Period 4) and gold (Period 6), and its physical and chemical properties are intermediate between those two metals.Properties, uses, and occurrenceTogether with gold, and the platinum-group metals, silver is one of the so-called precious metals. Because of its comparative scarcity, brilliant white colour, malleability, ductility, and resistance to atmospheric oxidation, silver has long been used in the manufacture of coins, ornaments, and jewelry. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits and as a vapour-deposited coating for electronic conductors; it is also alloyed with such elements as nickel or palladium for use in electrical contacts. Silver also finds use as a catalyst for its unique ability to convert ethylene to ethylene oxide, which is a precursor of many organic compounds. Silver is one of the noblest—that is, least chemically reactive—of the transition elements.Silver ornaments and decorations have been found in royal tombs dating back as far as 4000 BC. It is probable that both gold and silver were used as money by 800 BC in all countries between the Indus and the Nile.Silver is widely distributed in nature, but the total amount is quite small when compared with other metals; the metal constitutes 0.05 parts per million of the Earth's crust. Practically all sulfides of lead, copper, and zinc contain some silver. Silver-bearing ores may contain amounts of silver from a trace to several thousand troy ounces per avoirdupois ton, or about 10 percent.Unlike gold, silver is present in many naturally occurring minerals. For silver the more important deposits commercially are such compounds as the minerals tetrahedrite and argentite (silver sulfide, Ag2S), which is usually associated with other sulfides such as those of lead and copper, as well as several other sulfides, some of which contain antimony as well. Silver is found generally in lead ores, copper ores, and cobalt arsenide ores and is also frequently associated with gold in nature. Most silver is derived as a by-product from ores that are mined and processed to obtain these other metals. Deposits of native (chemically free, or uncombined) silver are also commercially important.SilverBecause the majority of the ores that contain silver also contain the important metals lead, copper, or zinc or a combination of the three, the silver-bearing fraction of these ores is frequently recovered as a by-product of copper and lead production. Pure silver is then recovered from the crude fraction by a combination of smelting and fire- or electrorefining. (For treatment of the recovery and refining of silver, see silver processing.) SilverHistorically, a major use of silver has been monetary, in the form of reserves of silver bullion and in coins. By the 1960s, however, the demand for silver for industrial purposes, in particular the photographic industry, exceeded the total annual world production.Use of the metal for sterling and plated silverware, ornaments, jewelry, and similar products has continued to be important. Alloys of silver with copper are harder, tougher, and more fusible than pure silver and are used for jewelry and coinage. The proportion of silver in these alloys is stated in terms of fineness, which means parts of silver per thousand of the alloy. Sterling silver contains 92.5 percent of silver and 7.5 percent of another metal, usually copper; i.e., it has a fineness of 925. Jewelry silver is an alloy containing 80 percent silver and 20 percent copper (800 fine). Gold dental alloys contain about 75 percent gold and 10 percent silver. The yellow gold that is used in jewelry is composed of 53 percent gold, 25 percent silver, and 22 percent copper. (For treatment of silver's use in ornamental and household objects, see metalwork.)Natural silver consists of a mixture of two stable isotopes: (isotope) silver-107 and silver-109. The metal does not react with moist air or dry oxygen but is oxidized superficially by moist ozone. It is quickly tarnished at room temperature by sulfur or hydrogen sulfide. In the molten state, silver can dissolve up to 22 times its volume of oxygen; on solidification, most of the oxygen is expelled, a phenomenon known as the spitting of silver. This can be controlled by the addition of a deoxidant such as charcoal to the molten silver. Silver dissolves readily in nitric acid and in hot concentrated sulfuric acid. The metal will also dissolve in oxidizing acids and in solutions containing cyanide ions in the presence of oxygen or peroxides. Dissolution in cyanide solutions is attributable to the formation of the very stable dicyanoargentate, [Ag(CN)2]−, ion.Like copper, silver has a single s electron outside a completed d shell, but in spite of the similarity in electronic structures and ionization energies there are few close resemblances between silver on the one hand and copper on the other.CompoundsFor silver the preeminently important oxidation state in all of its ordinary chemistry is the state +1, although the states +2 and +3 are known.Silver compounds include such familiar substances as silver chloride (AgCl), silver bromide (AgBr), and silver iodide (AgI). Each of these salts is used extensively in photography (photography, history of). Silver chloride serves as the light-sensitive material in photographic printing papers and, together with silver bromide, in certain films and plates. Despite the relatively high cost of silver chloride no satisfactory substitute has ever been found. The iodide is also used in the manufacture of photographic papers and films, as well as in cloud seeding for artificial rainmaking and in some antiseptics. All three halides are derived from silver nitrate (AgNO3), which is the most important of the inorganic silver salts. Besides these other salts, silver nitrate is also the starting material for the production of the silver cyanide used in silver plating.atomic number47atomic weight107.868melting point960.8° C (1,861.4° F)boiling point2,212° C (4,014° F)specific gravity10.5 (20° C)oxidation states+1, +2electronic config.[Kr]4d105s1* * *
Universalium. 2010.