- Compton effect
-
the increase in wavelength of monochromatic, electromagnetic radiation, as a beam of photons or x-rays, when it is scattered by particles whose size is small compared to the wavelength of the radiation. Also called Compton-Debye effect /komp"teuhn de buy"/.[1920-25; named after A. H. COMPTON]
* * *
Change in wavelength of X rays and other energetic forms of electromagnetic radiation when they collide with electrons.It is a principal way in which radiant energy is absorbed by matter, and is caused by the transfer of energy from photons to electrons. When photons collide with electrons that are free or loosely bound in atoms, they transfer some of their energy and momentum to the electrons, which then recoil. New photons of less energy and momentum, and hence longer wavelength, are produced; these scatter at various angles, depending on the amount of energy lost to the recoiling electrons. The effect demonstrates the nature of the photon as a true particle with both energy and momentum. Its discovery in 1922 by Arthur Compton was essential to establishing the wave-particle duality of electromagnetic radiation.* * *
▪ physicsincrease in wavelength of X-rays (X-ray) and other energetic electromagnetic radiations (electromagnetic radiation) that have been elastically scattered by electrons; it is a principal way in which radiant energy is absorbed in matter. The effect has proved to be one of the cornerstones of quantum mechanics, which accounts for both wave and particle properties of radiation as well as of matter. See also light: Early particle and wave theories (light).The American physicist Arthur Holly Compton (Compton, Arthur Holly) explained (1922; published 1923) the wavelength increase by considering X-rays as composed of discrete pulses, or quanta, of electromagnetic energy. The American chemist Gilbert Lewis (Lewis, Gilbert N.) later coined the term photon for light quanta. Photons have energy and momentum just as material particles do; they also have wave characteristics, such as wavelength and frequency. The energy of photons is directly proportional to their frequency and inversely proportional to their wavelength, so lower-energy photons have lower frequencies and longer wavelengths. In the Compton effect, individual photons collide with single electrons that are free or quite loosely bound in the atoms of matter. Colliding photons transfer some of their energy and momentum to the electrons, which in turn recoil. In the instant of the collision, new photons of less energy and momentum are produced that scatter at angles the size of which depends on the amount of energy lost to the recoiling electrons.Because of the relation between energy and wavelength, the scattered photons have a longer wavelength that also depends on the size of the angle through which the X-rays were diverted. The increase in wavelength, or Compton shift, does not depend on the wavelength of the incident photon.The Compton effect was discovered independently by the Dutch physical chemist Peter Debye (Debye, Peter) in early 1923.* * *
Universalium. 2010.