Traffic Control

Traffic Control

* * *


      supervision of the movement of people, goods, or vehicles to ensure efficiency and safety.

      Traffic is the movement of people and goods from one location to another. The movement typically occurs along a specific facility or pathway that can be called a guideway. It may be a physical guideway, as in the case of a railroad, or it may be an agreed-upon or designated route, marked either electronically (as in aviation) or geographically (as in the maritime industry). Movement—excepting pedestrian movement, which only requires human power—involves a vehicle of some type that can serve for people, goods, or both. Vehicle types, often referred to as modes of transportation, can be broadly characterized as road, rail, air, and maritime (i.e., water-based).

      Traffic evolves because of a need to move people and goods from one location to another. As such, the movement is initiated because of decisions made by people to transport themselves or others from one location to another to participate in activities at that second location or to move goods to a location where they have higher value. Traffic flows thus differ fundamentally from other areas of engineering and the physical sciences (such as the movement of electrons in a wire), because they are primarily governed and determined by laws of human behaviour. While physical attributes are critical in the operation of all modes (e.g., to keep airplanes in the air), the demand or need to travel that gives rise to traffic is derived from the desire to change locations.

      One of the principal challenges in traffic control is to accommodate the traffic in a safe and efficient way. Efficiency can be thought of as a measure of movement levels relative to the objectives for a particular transportation system and the finances required for its operation. For example, a railroad can be thought of as efficient if it can accommodate the travel requirements of its customers at the least cost. It will be thought of as inefficient if an alternative (e.g., a trucking service) can also meet customer needs but at a lower cost.

       safety, the management of traffic to reduce or eliminate accidents, is the other critical reason for traffic control. An airline pilot needs to be warned of high winds at the destination airport just as an automobile driver needs to be warned of a dangerous curve or intersection ahead. Traffic control has as its principal objective to manage the movement of people and goods as efficiently and safely as possible. The dual objectives, however, frequently conflict or, at least, compete. For example, there are frequent cases in which commercial airlines are held on the ground at their originating airport until they receive a clearance to land at a destination. The clearance is given only when the destination airport determines that the number of airplanes expected to arrive at a particular time is small enough that local air traffic controllers can assist the plane in landing without overtaxing their human limitations and compromising safety.

      In road traffic, intersections with traffic lights (i.e., green, amber, and red indications) will often add a separate lane with a lighted green arrow to allow left turns with no opposing traffic. This frequently results in longer nongreen periods at the intersection, causing an increased delay and a reduction in efficiency and mobility. Traffic control will always be burdened with seeking to satisfy the frequently conflicting goals of safety and mobility.

      Safety is not the exclusive concern of the traffic control community. Nearly every transportation mode has organizations that regulate operators through a series of licensing procedures, sanctions for inappropriate operating practices, and requirements for continuing training to retain certification to operate. Examples include federal aviation authorities that oversee pilot training (e.g., the U.S. Federal Aviation Administration); road agencies that administer driver's licenses may exist at the provincial level (as in Canada) or at the national level (as is more common in Europe). Transportation safety management is thus accomplished through a complex set of interactions between different agencies at different levels (e.g., national, regional or state, and local) using both formal legal requirements and administrative actions. The following discussion will necessarily focus on safety concerns that evolve from and are a component of the traffic control function.

      Traffic control is a critical element in the safe and efficient operation of any transportation system. Elaborate operational procedures, rules and laws, and physical devices (e.g., signs, markings, and lights) are but a few of the components of any traffic control system. At the centre of any system is the operator: a driver or pedestrian in a roadway system, a pilot in aviation or maritime systems, and a locomotive engineer in railway systems. While traffic control can be considered initially as a need to control or influence large numbers of vehicles, it is important to realize that traffic is made up of a large number of individual operators who collectively must make consistent decisions in order for the systems to work safely and efficiently.

      The operator is the principal decision-making unit in any traffic control system. As such, the entire system is organized to assure the safe and efficient movement of vehicles along a guideway or separational infrastructure by providing adequate, accurate, timely information to the operator. The operator accepts inputs from a variety of sources, enters into a decision-making process, and determines the appropriate control actions to maintain vehicle operation.

      The operator receives most immediate and direct information from the vehicle. In addition to visual inputs regarding vehicle status that are provided by instrumentation (e.g., speed, direction), the operator receives information through physical sensation of movement (i.e., through forces acting on the muscles and sensory organs). The slowing and turning of a vehicle, for example, are sensed not only visually but also physically by the operator's body as the vehicle decelerates and changes course. Different vehicles have vastly different performance characteristics that directly affect the physical forces acting on an operator. An automobile is highly responsive and gives virtually immediate response (certainly less than a second) to braking or steering inputs. A large vessel or airplane, because of its design and the “guideway” in which it operates, is slow (on the order of minutes) to respond to steering or speed change inputs. Small aircraft and boats, however, have response attributes much more similar to an automobile than to their larger counterparts.

      In addition to vehicle inputs, the operator's decision making is influenced by the information provided by the guideway and its associated infrastructure. Because infrastructure is man-made, it is one of the places where proper design and procedures provide an important foundation for operating safety. For example, roadway systems set precise standards for the size, shape, colour, and use of road signs and markings. These standards have the goal of improving road safety and efficiency by providing the driver with consistent information regarding hazards, control of right-of-way (e.g., stop signs or signals), and direction guidance (e.g., “Highway 66 next left”). Aviation, maritime, and rail systems also have elaborate standards, all with one goal in mind: to reduce accidents and increase efficiency through the consistent and effective use of standard traffic control devices. Clearly aviation, and to some degree maritime, systems cannot place physical signs in the sky or sea. Electronic signs or signals, particularly communication devices, are used instead to guide the vehicle and operator.

      The guideway includes the attributes of the physical infrastructure upon which the vehicle operates (e.g., a roadway for automobiles, trucks, bicycles, and pedestrians or a set of rails for trains). There are similar corridors within which planes and ships operate, although they are not defined by physical elements so much as geographic location (i.e., longitude and latitude, and altitude for aviation). The ambient environment poses both direct and indirect limitations on an operator's ability to control a vehicle. Snow, rain, sleet, fog, and darkness all serve to limit visibility. Electronic devices such as radar are particularly helpful in aviation and marine contexts in providing supplementary information that allows operators to make safe and efficient control decisions.

Road traffic control
      At the broadest level, road (roads and highways) traffic control includes the layout of streets to serve a variety of travel needs in a region. Highways or expressways (expressway) carry through traffic at high speed; arterial streets carry traffic within and across urban areas; and local streets provide low-speed travel but access to many local destinations. The hierarchy of streets that perform at different levels of speed and provide different levels of access form the foundation upon which traffic control problems evolve. Long delays and frequent accidents are common outcomes of inadequate road planning, which results in an insufficient number of roads to meet travel needs. While traffic control may help, it is not a substitute for adequate provision of transportation supply.

      Traffic congestion, often bad enough to require drastic control measures, was a feature of city life at least as early as Roman times. A basic cause, then as now, was poor city planning (urbanization), with roads laid out in such a way as to bring traffic from all quarters to a central crossing point. In the 1st century BC Julius Caesar (Caesar, Julius) banned wheeled traffic from Rome during the daytime, a measure gradually extended to cities in the provinces (ancient Rome). Late in the 1st century AD the emperor Hadrian was forced to limit the total number of carts entering Rome.

      About 1500 Leonardo da Vinci, envisioning a revolutionary solution to urban traffic problems—then acute in the crowded and busy Italian cities—proposed separating wheeled and pedestrian traffic by creating routes at different levels. Except for the railway, however, few segregated route systems were established before the 20th century.

      Congestion was severe enough in European (Europe, history of) cities of the 17th century to require ordinances prohibiting parking on certain streets and establishing one-way traffic. The advent of the railroad brought temporary relief to the growing problem of road traffic control, though it created congestion at terminals inside cities. The automobile, with its increase first in speed and then in numbers over horse-drawn transport, rapidly created a new situation that was to become one of the characteristic problems of urban industrialized society in the 20th century.

Traffic elements
      Road traffic control at its most elemental level is achieved through the use of a system of signs, signals, and markings. Elaborate engineering (safety engineering) standards are used to assure that the traffic control devices convey a clear and simple meaning to the motorist. A comparable and matching education program is needed, through driver-licensing authorities, to assure that those who operate motor vehicles understand the rules of the road and the actions that they are required or advised to take when a particular control device is present.

      Each traffic control device is governed by standards of design and usage; for example, stop signs always have a red background and are octagonal in shape. Design standards allow the motorist to quickly and consistently perceive the sign in the visual field along the road. Standard use of colours and shape aids in this identification and in deciding on the appropriate course of action.

      Standards also exist on the use of the control (control system) device, such as guidelines as to when circumstances warrant the use of two-way stop signs or traffic signals. Standards also are used to locate control devices in a particular circumstance. For example, signs on high-speed expressways or motorways need to be placed well in advance of exits to allow sufficient time for drivers to choose a course of action. Standards for location allow drivers to expect and anticipate these devices at certain distances from decision points. Adhering to these standards promotes safety; failure to adhere increases the risk of driver error and, ultimately, accidents.

      The design and use of traffic control devices must also recognize the tremendous mix of vehicles that use highway systems. The devices must be useful for pedestrians and bicyclists as well as drivers of 80,000- to 120,000-pound trucks that are up to 100 feet long. It is not the size and weight differences per se that are important but what they imply for vehicle performance. On a road that is heavily used by trucks, for example, the location of warning signs for a dangerous intersection must be placed sufficiently in advance to compensate for a truck's longer stopping distance (as compared to that of a car). Design of devices such as guardrails must take into account the larger mass and higher centre of gravity of trucks as well. Because trucks serve so many purposes, highly specialized vehicles have evolved to meet different needs. While principles of standardization would indicate a desire to limit the type and configuration of trucks in use, characteristics of transportation markets often lead to specialized vehicle developments. The conflict between standardization and market need, and the sheer size and bulk of many trucks, has led to a series of controversies concerning their safety performance. As long as private, personally owned automobiles must share roadway space with very large commercially owned trucks, the conflicts and controversy are likely to continue.

Common control techniques
       Summary of Road Traffic Control Devices, TableThe traffic control devices described in the previous section are summarized in greater detail in the Table (Summary of Road Traffic Control Devices, Table). These devices, individually and as a system, assist the driver in making safe, efficient, consistent decisions. There are several additional more specialized cases, which are described below.

      Traffic signal controllers are electronic devices located at intersections that control the sequence of the lights. Along with computers, communications equipment, and detectors to count and measure traffic, the controllers are frequently grouped together to control large numbers of traffic signals, either at intersections in a city or on ramps approaching expressways and motorways. While the detailed brand and type of equipment vary greatly, the functions performed by the systems are generally consistent.

      There are four basic elements in a computerized (computer) traffic control system: computer(s), communications devices, traffic signals and associated equipment, and detectors for sensing vehicles. Traffic flow information is picked up by the detectors from the roadway and transmitted to the computer system for processing. The detectors are normally embedded in or suspended above the roadway. Vehicle counts and speeds are typically measured; vehicle type (e.g., auto or truck) also may be obtained. The computer processes the traffic flow data to determine the proper sequence for the lights at the intersections or ramps. The sequencing information is transmitted from the computer through communications equipment to the signals. In order to assure safe and proper operation, information is also transmitted from the traffic signals to the computer, confirming proper operation. Humans can interact with the system by accessing the computer system in some way.

      While these are the general principles, important variations are possible. First, it is common to find some form of computer as part of the traffic signal at the intersection or ramp to be controlled. This allows the local computer to process traffic flow data directly, reducing communications needs and costs. Another variation is that selected vehicles themselves may transmit traffic data directly to the computer system. This is frequently combined with the ability to receive information in the vehicle regarding points of congestion, so the driver can choose to avoid them. If the two-way communication exists between the vehicles and computer system, it may not be necessary to have separate physical detectors.

      Another area of application for traffic control devices is their use in traffic restraint (often called traffic “calming”). Rather than use traffic control to increase efficiency of movement, controls are used to create impediments that restrain traffic from sensitive areas. Most commonly applied in older cities whose road network does not match current needs, traffic restraint seeks to funnel traffic onto particular routes by creating impediments to movement on others. These other routes typically have some special value—a historic site or a residential character—that requires protection. Devices typically used include speed bumps, barricades to block streets, turn prohibitions, stop signs, and raised pavement markers.

      Traffic restraint also includes programs to foster bicycle and pedestrian travel. Wider sidewalks, sometimes including tables and benches, and bicycle lanes frequently accompany restraint actions. These programs recognize that what is good for vehicular travel may not necessarily be positive for other road users, the environment, or the neighbourhood. An unfortunate aspect of these programs is that their benefits and costs are highly localized. Those living on the “right” side of the restraint device generally experience slow speed and lower traffic volume. Those living along the routes onto which the traffic is funneled must endure increased vehicle volumes and speeds.

      Traffic control also can be used to give priority to high-occupancy passenger modes. The objective of such actions is to emphasize people rather than vehicle movement. A variety of techniques are available and are employed in priority treatment approaches. The most common is the dedication of special lanes to the use of priority, or high-occupancy, vehicles. Buses and car pools can use the lanes to move at high speeds along congested expressways and motorways, bypass queues at expressway ramps, and move along congested arterial streets. Because these special lanes are designed to operate uncongested, they provide an incentive, through reduced travel times, for travelers to leave private single-passenger automobiles and travel by multipassenger modes. Buses also may be given priority by allowing only them to turn at intersections and to be provided with extra green time at a traffic signal. The undesirable feature of such systems is that they provide improved service to high-occupancy modes while sustaining or increasing congestion for others. The residual congestion for other road users may result in continued wasteful fuel consumption and high vehicle pollutant emission.

New concepts
      Rapid and continuous advances in communications and computer technology are spurring a host of new concepts in road traffic control. Automobiles equipped with on-board computers, driver displays, and communications devices will receive instructions about the optimal path to a destination from a traffic control centre. The vehicle also will periodically report its travel time and speed to be used as part of the information for the computer to give advice. In more advanced systems, the timing of traffic signals at intersections and ramps will be coordinated with the routing advice. Rather than simply accommodating vehicles that travel through the network, the system will cause patterns of travel to be altered. Computers and sensors within the vehicle will monitor the operation of critical safety systems (e.g., brakes, steering), warning the driver when conditions exceed nominal values.

      Communications and computers also will aid the movement of trucks (truck) and other commercial vehicles in urban areas. A dispatcher will be able to alter the schedule while the driver is on the road. For these companies, this means reduced costs, and for their customers, improved service. Drivers on long-distance intercity trips can be warned of impending bad weather. They also can receive warnings if they are entering a curve too quickly or an intersection too fast. Road safety should be greatly enhanced by such systems.

      Public transit users should be able to receive more accurate information concerning travel time and seat availability on buses and trains. If accurate information can be provided in the home or office, the systems can spread peak loads, making service less expensive to provide and the trip more comfortable for the traveler. Those who are informed of congestion or uncomfortable conditions can use another system to find a match for a car pool participant. Alternatively, individuals may “telecommute,” staying at home and working with their office electronically.

      Lastly, the ultimate system is viewed as an automatic vehicle-control system in which a driver's vehicle is checked at an authorized station, then proceeds on a highway, lane, or local street. The spacing to the vehicle ahead and lateral control within the lane are determined by on-board computers. Maximum flows are expected to increase from 2,000 vehicles per hour per lane to as many as 10,000 to 20,000. The increased flows will mean substantial reductions in congestion and, because vehicles are automatically controlled, improvements in road safety through the elimination of accidents due to driver error.

Air traffic control (air-traffic control)

      The air age arrived on Dec. 17, 1903, when the Wright brothers succeeded in a 120-foot flight in a heavier-than-air craft at Kitty Hawk, N.C., U.S. It is difficult to imagine the rapid technological advances that now allow interplanetary travel by unmanned, but directly controlled, satellites and probes. The earliest common uses of aviation were by the military and the civilian postal service. With infrequent flights and virtually no carriage of passengers, the primary concern was for the integrity of the aircraft and the management of safe takeoffs and landings. One of the principal distinguishing characteristics of aviation, compared to other transportation modes, is the high speed and “vertical” nature of operations. Because of these unique features, aviation has always posed the highest risk of severe injuries and fatalities, given an accident, of almost any transportation mode. When passengers began to be carried in significant volumes in the 1920s, it became clear that a systematic set of air traffic control principles were needed to handle the increasing volumes at several critical airports.

      Airplanes travel along established routes called airways, which are analogous to guideways, even though they are not physical constructions. They are defined by a particular width (e.g., 32 miles) and also have defined altitudes, which separate air traffic moving in opposite directions along the same airway. Because of the ability to vertically separate aircraft, it is possible for through traffic to fly over airports while operations continue underneath. The economics of air travel require relatively long-distance travel from origin to destination in order to retain economic viability. For the vehicle operator (i.e., the pilot), this means short periods of high concentration and stress (takeoffs and landings) with relatively long periods of low activity and arousal. During this long-haul portion of a flight, a pilot is much more concerned with monitoring aircraft status than looking around for nearby planes. This is markedly different from highways, in which a collision threat is nearly always apparent. While midair collisions have occurred away from airports, the scenario most feared by safety analysts is a midair collision near or at an airport because of a traffic control misunderstanding. These concerns led to the evolution of the present air traffic control system.

      The first attempt to develop air traffic control rules occurred in 1922 under the auspices of the International Commission on Air Navigation (ICAN) under the direction of the League of Nations (Nations, League of). The first air traffic controller, Archie League of St. Louis, Mo., U.S., began working in 1929. The long distances traveled by aircraft show why aviation quickly became an international concern. The capabilities of aircraft to fly hundreds or thousands of miles at several hundred miles per hour created a market for long-distance, high-speed transportation. Two immediate concerns were in the areas of language and equipment compatibility. Pilots from many countries and with many native languages needed to communicate with each other and with controllers on the ground. Electronic equipment including radios (radio) and, more recently, computers (computer) needed to exchange information. English (English language) was established as the international language of air traffic control, but even within this context, there was a need for precise use of phrases and strings of words. These common practices have their conceptual roots in the same issues of uniformity that are directly applied to highways. The operator needs to be given clear and simple information that meets a direct need. In road transportation, this is conveyed through verbal or symbolic visual images; in aviation, it is achieved through the spoken word, supplemented by aircraft instrumentation. The initial international activity in navigation also distinguishes air transport: finding a way to a destination was an area of principal concern in the early years of aviation. Because aircraft could not operate without fixed land references (particularly on long-distance trips), it became necessary to develop an elaborate system of navigation aids (first visual, using beacons, now electronic, using radar) to help indicate the current aircraft position. Availability of inertial navigation units for commercial aircraft has reduced the need for this communication in the passenger sector; en route information is still provided through a variety of communication media on long-distance trips to warn of impending delays or other conditions.

Traffic elements
      The elements that make up the air traffic control system must provide the capability to assist aircraft in traveling between airports (airport) as well as in landing and taking off. Air route traffic control centres are responsible for controlling and monitoring movement between origin and destination airports. Each centre is responsible for a defined geographic area; as an aircraft continues on a flight, crossing these areas, the responsibility for monitoring the plane is transferred (“handed off”) to the next air route centre. The flight continues to be transferred until it reaches the control area at its destination. At this point, typically within five miles of the destination airport, the air traffic control function is turned over to an airport controller, and the plane is guided through a sequence of locations in order to land.

      The airport traffic control tower has direct responsibility for managing handling, takeoffs, and all movement within the airport terminal control area. Flight service stations are located at airports and air route centres, providing updated weather and other information of relevance to incoming and departing pilots.

      Air traffic controllers and aircraft pilots occupy a unique position in the air traffic control system. There is no other mode of transportation that relies so heavily on the communication and coordination of these two sets of individuals. As part of an overall objective to maintain safe and efficient air traffic flow, the pilot is required to comply with requests and instructions directed to him by the controller, subject to the pilot's ultimate responsibility for the safety of the aircraft. Particularly in the vicinity of airports, and particularly when arranging for landing or takeoff, clear communication is essential. Conflicts can arise between the control responsibilities of the air traffic controller and the authority of the pilot in the aircraft. Traditional approach control using stacks (see below) placed a heavy burden on the airport traffic controllers to monitor many planes in the air. After the 1981 air traffic controller strike in the United States and the subsequent dismissal of approximately 10,000 controllers, the Federal Aviation Administration instituted a policy of flow controls. These controls required an aircraft to remain at its origin airport unless a landing opportunity was estimated to be available at the destination airport at the estimated arrival time. This results in a significantly reduced workload for the terminal air traffic controllers at the destination airport. It is an understandable source of frustration for travelers because they are not informed of a flow control delay until after the plane is pushed away from the gate at its origin and the pilot requests a landing slot. While air traffic controller staffing levels have gradually increased, the flow control system is retained because it reduces air traffic controller stress and workload by delaying flights on the ground, not in the air.

      Aids to navigation are a critical element in the air traffic control system. The navigation function needs to be satisfied by a variety of technologies to supplement destination finding when visual references are limited by weather or ambient light. The earliest navigation aids were lighted beacons along the ground; these suffered obvious problems during adverse weather and were replaced by radio direction-finding equipment. The radio technologies are able to transmit the heading and distance to an intended destination. These aircraft-mounted technologies are supplemented by air route surveillance radar, which monitors aircraft within each designated sector of the air route traffic control system. The radar-based systems form the backbone of the navigation aids for privately owned aircraft and small passenger-carrying planes. Major commercial jets are now supplied with inertial navigation units, which allow an aircraft to independently navigate to a destination. A computer and gyroscope are used to sense direction and, with speed sensors, track direction and distance to the destination. The navigation units can fly virtually automatically until in the vicinity of an airport, at which time the pilot and controller interact to safely control the landing.

 The landing aids most often employed are illustrated in Figure 1—>. An aircraft leaves the holding stack (a series of elliptical patterns flown at assigned altitudes while awaiting clearance to land), if there is one, and approaches a runway through an outer and an inner marker. Airport surveillance radar and approach lights are used to assist the pilot. The landing occurs on a runway that is designed to carry the impact load of the aircraft on landing. An important role is played by exit taxiways in expeditiously clearing aircraft from the runway in order to allow another operation (either landing or takeoff). The electronic landing aids, approach lights, and exit taxiways should work as a system to safely land and clear the runway for another operation.

      The final element in the air traffic control system is the ability to control and direct aircraft on the ground. Arriving flights must be safely guided to a terminal, departing flights to the proper runway. For smaller airports, under satisfactory weather conditions, this can be done visually. At larger airports, ground movement radar is needed to track planes on the ground, just as in the air. Part of an air traffic controller's duties is to conduct this guidance of planes along taxiways and near terminals. Ground movement problems have been exacerbated in the United States by the hub-and-spoke network that has evolved for most carriers since deregulation in 1978. Carriers now operate in and out of hub airports, which are the focal points of large numbers of flights. Waves of aircraft arrive tightly spaced in a narrow time window and depart similarly bunched. Passengers frequently reach their destinations by changing planes at the hub. This allows airlines to minimize transfer times and schedule efficiently, but it can result in extreme ground delays when many aircraft exchange gate positions simultaneously. Airlines generally resist attempts to move flights significantly from on-the-hour or half-hour departures because of a perception of passenger inconvenience. Expansion of hub-and-spoke operations will continue the pressure on ground operations.

Conventional control techniques
      Airspace (air space) is divided by flight levels into upper, middle, lower, and controlled airspace. Controlled airspace includes that surrounding airports and airways, which define the corridors of movement between them with minimum and maximum altitudes. The degree of control varies with the importance of the airway and may, for private light aircraft, be represented only by ground markings. Airways are usually divided by 1,000-foot levels, with aircraft assigned specific operating levels according to direction and performance. Normally all such movements are controlled by air traffic control centres. In upper airspace, above about 25,000 feet (7,500 metres), pilots may be allowed free route choices provided that flight tracks and profiles have been agreed on in advance. In middle airspace, all pilots entering or crossing controlled airspace are obliged to accept control, and notification must therefore be given to the control centre in advance. There is a continuing trend toward expanding areas requiring positive control. Besides vertical spacings in airways, horizontal separations are important, usually taking the form of a minimum time interval of 10 minutes between aircraft on the same track and elevation with a lateral spacing, typically, of 10 miles.

      The simplest form of flight control is called the visual flight rule, in which pilots fly with visual ground reference and a “see and be seen” flight rule. In congested airspace all pilots must obey the instrument flight rule; that is, they must depend principally on the information (information processing) provided by the plane's instruments for their safety. In poor visibility and at night, instrument flight rules invariably apply. At airports, in control zones, all movements are subject to permission and instruction from air traffic control when visibility is typically less than five nautical miles or the cloud ceiling is below 1,500 feet.

      Procedural control starts with the aircraft's captain receiving meteorologic forecasts, together with a briefing officer's listings of radio-frequency changes along the flight path and notice to airmen. Flight plans are checked and possible exit corridors from the flight path, in case of emergency, are determined. Flight plans are relayed to control towers and approach control centres. As the aircraft taxis out, under instructions from the ground controller, the pilot waits to be fitted into the overall pattern of incoming and outgoing movements. Controllers allocate an outgoing track, which enables aircraft separation to be maintained; this is determined from a check of the more recently used standard departure clearances. As the aircraft climbs to its initial altitude, on an instructed heading, the departure controller identifies the image produced by the aircraft on the radar screen before allowing any new takeoffs or landings. Further instructions clear the aircraft for its final climb to the en route portion of the flight and the pilots' first reporting point marked by radio devices. Progress reports on the en route portion of the flight are required and typically are tracked on radar.

      At a reporting point en route, the receiving control centre takes over the flight from the departure centre, and all further reports and instructions are made to the new control centre. Descent instructions are relayed to arrange the incoming aircraft at separations of perhaps five miles, in effect, on a slanting line. As the aircraft closes in, speed adjustments or lengthening of flight paths may be necessary to maintain separations of three nautical miles over the airport boundary. Controllers determine the landing sequences and stacking instructions and may adjust takeoffs to handle surges in the incoming flights. The final stage is initiated by transfer of control to an approach controller. Under radar surveillance the final directions are given for landing. In the landing sequence, control passes to the control tower, where precision radar is used to monitor the landing, and ground-movement controllers issue taxiing instructions.

New concepts
      Aviation interests also are taking full advantage of new computer and communications capabilities. In some cases, such as with on-board inertial navigation units, the computer systems will actually direct the aircraft. In most other circumstances, computer systems will provide a variety of decision-support and warning functions to pilots and air traffic controllers. Radar and plane-to-ground communications are used by air traffic control systems to predict midair conflicts and suggest actions to resolve them. Decision-support systems with voice recognition can be used to alert a controller as to when a risky or inappropriate command is given. Runway incursions (the simultaneous and conflicting use of a runway for arrival and departure) can be identified and prevented, for example. Minimum safe altitude warning also can be encoded within the air traffic control radar. Knowing the location, speed, and heading of all aircraft, the system can sound an audio and visual warning to the controller of an impending low altitude event. The low altitude systems are greatly facilitated by a capability to accurately digitally map the location of objects with particular attributes (e.g., height above ground level) for use in low-altitude systems. Less fanciful but no less important is the continued expansion in use of microwave landing systems (MLS), which are replacing aging instrument landing system (ILS) equipment. The MLS is a more accurate and reliable contemporary technology.

Rail traffic (railroad) control

      The first slow and cumbersome horse-drawn rail traffic posed few control problems not resolved by follow-the-leader principles. It was only after the development of swifter steam-driven trains, in the early years of the 19th century, that more frequent trains and their proximity to each other created dangers of collisions. The smooth contact between tracks and iron wheels allowed higher speeds and greater loads to be hauled at the same time that the low friction necessitated long stopping distances. Engines were fitted with brakes and, later, manned brake vans, whose guard could apply the brakes when the engine driver signaled with a whistle.

      Trackside control also developed slowly with the first signalman, or “railway policeman,” located at passenger and goods depots, or stations, sited along the line. These men indicated, by means of hand signals, the state of the track ahead. Red taillights were mounted at the rear of trains at night to improve safety. Later, signal flags were often replaced by swiveling coloured boards, or disks, for daytime use and by coloured lights at night. Later, signals were located well ahead of stopping points, giving rise to the term “distant signal.” The first real method of control was the development of a time-interval system of train spacing. In the event of a breakdown or accident, however, there were no means of delaying a following train from entering a section of track except by a physical check on entry and exit by sections—e.g., a brakeman with a flag or lantern.

      First introduced for railway use in England between Euston and Camden in 1837, the electric telegraph permitted communication between fixed signal points. Each signalman was responsible for a portion of track known as a block section. Bell codes were used to describe the class and route of the train to be passed by the signalman to the next block section or to accept or reject a train from the preceding section. Generally, only one train was permitted in a section at one time; under poor visibility conditions a section was normally kept empty between every two trains. Many decisions of precedence were left to the individual signalman, and, with only limited information at their disposal, signalmen often made incorrect decisions, causing excessive delay.

      Because concise and standardized information was needed by the engineer, mechanical semaphore arm signals, operated remotely by wires from a lever in a signal box, were developed in 1841 as a principal means of communication. The angle of the arm indicated stop, proceed with caution, or clear ahead. For night use, coloured lenses, mounted near the pivot of the arm, were passed across a light source, thus displaying, for the different arm angles, either the familiar red for stop, yellow for caution (approach, reduce speed), and green for clear (proceed as authorized). The time losses due to poor acceleration and deceleration characteristics of trains were obviated, to some extent, by the increasing use of presignals, informing the driver that the signal ahead might be at stop and requiring him to reduce speed or to proceed slowly from a stop.

      In the United States the railroads were provided land grants, which gave them ownership of lands adjacent to tracks as an incentive to expand service and access from the East Coast to the West. This led to a widely dispersed rail network, in private ownership with considerable duplication of service. Because the network was greatly dispersed, little congestion was experienced except in terminal areas. An unfortunate outcome of the land grant policy was oversupply of rail service and, in some cases, deliberate attempts to use rail expansion to acquire real estate. While these problems did not occur to the same degree in other smaller countries, they helped shape the scale of the U.S. system for years to come.

Traffic elements
      Rail traffic control differs fundamentally from all other modes because the operator of the rail vehicle must exercise virtually all vehicle control through changes in speeds. Trains do not move vertically, and they are otherwise constrained to the guideway defined by the tracks. Rail's principal mechanical advantage is the low friction between the wheels and the rails; this allows for efficient propulsion of the vehicle. Unfortunately it also causes rail's chief control problem: very long stopping distances. In virtually all situations, the rail vehicle operator must anticipate events very far in advance in order to take appropriate action. Unlike the highway system, in which signs and signals largely supplement what the operator sees, in many cases the rail control system must provide the operator with information beyond the immediate visual scene. This places even greater importance on the control system. Further, because the operator can adjust only speed, no other evasive action is possible to avoid an accident. These constraints in physical operation add a different imperative to rail traffic control than to any other mode.

      While the technology of railroading might appear uniform, it is not, nor is the service that rail companies provide. Railroads were initially in the business of moving passengers and freight long distances (intercity service). In some countries, this dual function has remained with some or all aspects of the passenger and freight carriage being subsidized by national governments. In the United States, the long-distance passenger service, with isolated exceptions, is now conducted by airlines. Rail service is almost exclusively long-haul transportation of heavy, low-valued goods because of the comparatively long time to ship products. Because of the size of trains and their length, most control problems in the freight sector occur near cities and other termini.

      Rail passenger transportation in the United States is principally conducted within urban areas and cities by urban mass transit systems. While these systems also have evolved from private to public ownership, they must contend with traffic congestion that is endemic to large urban areas. This problem is dealt with in many large cities by burying the track and stations, creating a subway or underground service. In some cases, the tracks were elevated and run one or two stories above ground. The nature of the service provided within urban areas is very different from intercity service, and so the methods of control differ. Urban service contains frequent stops. Further, some rail service (streetcars, trams, or trolleys) runs on rails but in mixed street traffic with automobiles, buses, trucks, bicycles, and pedestrians. These rail vehicles use warning bells or buzzers to alert passengers regarding stops. They also contain all the lighting and signaling required of other road vehicles. Because of their importance in moving large numbers of passengers, urban rail transit vehicles are frequently given priority in their movement along the road network. The priority may take the following forms: separate right-of-way or lane in which other traffic may not operate; exclusively signaled turns at intersections, particularly those with heavy congestion; or portions of urban street space given to loading platforms to ease passenger boarding and alighting. Traffic signals at intersections may also be built to give priority to rail vehicles by interrupting or preempting the normal sequencing of the signals when a rail vehicle approaches. This allows the rail service to be more efficient while increasing the safety of the rail passenger. Frequent interruption of the normal signal sequence can, however, result in long delays for other road users.

Conventional control techniques
      Modern railway traffic control techniques are principally automated developments of earlier systems based on timetabling, operating rules, and signals. The scheduling of trains in a working timetable predetermines the basic running patterns and the daily work pattern of personnel. Unscheduled operations require controllers to change the schedules. Minimum intervals between trains are determined on the basis of track conditions. Time-distance diagrams are often used to compare running conditions with those in the timetable and to indicate when and what type of regulatory intervention is needed.

      Colour light signals have now largely superseded semaphore types. Because they are operated electrically, colour light signals can be sited at distances remote from the signal box. Combinations of colours are used to indicate different requirements to the driver. High-intensity lights, visible over great distances, are particularly advantageous in poor weather. Searchlights use a single lens and bulb with different colours displayed by means of panels on colour filters rotated in front of the lamp. Lights can be more appropriately sited in relation to the driver's cab position and permit a greater variety of information to be efficiently displayed.

      The basic element in automatic control (control system) is an electric circuit built into the track, which operates track signals. When a train enters a section of track, or “block,” it causes the current to detour through the locomotive's wheels and axles instead of completing its normal circuit, altering signals ahead. When a train has passed a section, the signal behind it is automatically switched by a track circuit immediately ahead to indicate danger. As the train advances to the next section, the first signal can automatically be changed to a lower state of warning and so on until a full clearance signal is set at a given number of sections behind the train. The number of intermediate sections left behind a train is determined by train speeds and section lengths and influences the capacity of a track.

      The first recorded moving-train, two-way radio was used by the New York Central Railroad in 1928. Radio offers a number of advantages in improving communications between train crews and control dispatchers or maintenance gangs on the track. It also establishes a direct link between trains and obviates the need for crews to use wayside telephones. Equipment failures can be reported directly, and because of this and other advantages, particularly in automated marshaling yards, delay is reduced. Most railways throughout the world are equipped to some extent with two-way train radios.

      Sorting freight cars is a complex operation. Various control systems have been installed in marshaling yards, enabling cars to be pushed over a raised track, known as a hump, so that the car travels freely down a grade and over switching points to its correct berth. Automatic humping includes sensors to detect car speed and weight, from which car rolling resistance is estimated. Once the uncoupled car has been allocated a train and siding, automatic switching sets the points along its predetermined path. Simultaneously the computer calculates the speed required for the car to reach the end of the train. Automatic braking devices or boosters reduce or increase the car's speed off the hump to that needed to reach its train coupling point in the siding.

      Other, more refined, methods remotely control the pushing locomotive. The spacing of cars rolling off the hump, the automatic control of the pushing speed, and the control of retarders or speed boosters are all directly controlled by computer. Identification of car destinations is an essential part of the process. Manual checking in the yard with radio links to the yardmaster have been displaced by closed-circuit television checking off the train against the makeup list that is forwarded by teleprinter.

      The final scheduling and control of the freight train is integrated into the comprehensive rail control systems, and computers permit the computation of alternative strategies with an assessment of benefits. Finally, controllers impose their selection priorities.

      Important traffic control and safety problems can exist where rail systems cross road networks at the same grade or level (i.e., without a bridge or tunnel to separate them). These areas, called rail-highway grade crossings, pose particular control and safety problems. Because rail trains are of substantial mass and often travel at high speeds, any collision with a road vehicle is likely to severely damage the road vehicle and injure or kill its occupant(s). Because trains cannot readily slow and stop in response to an emergency, the driver of the road vehicle is most responsible for taking appropriate control actions at crossings. A well-known problem in vision perception frequently operates at railroad crossings: road drivers underestimate the closing speed and distance of the train to the crossing, because it is a relatively large object moving across the driver's field of view at a nearly 90° angle. The misperception makes it important that drivers be warned of the location of the crossing and whether trains are approaching.

      Traffic devices at rail-highway grade crossings include signs, signals, and automatically controlled crossing gates. Simple warning signs advising the motorist of a crossing are the minimal type of control exercised. These may be supplemented with flashing lights that are activated by the train when it reaches a particular distance from the crossing. The signals may be supplemented further by crossing gates that block the road based upon train detection as with the signal lights. The signal light and gate control are expensive because they require the installation and maintenance of the train detection and communication system. Simple warning signs, while useful, have the shortcoming that the degree of hazard posed by the crossing is not well known. Drivers who frequently pass the crossing with no trains nearby can become conditioned to be less alert, increasing their accident risk.

      Traffic control also must be carefully managed in terminal areas where trucks are used to carry traffic to and from a train. Traditional road traffic control techniques are used in these circumstances, but particular attention must be paid to accommodating the size and performance characteristics of trucks. Intersections must have sufficient turn radii; freeway ramps must be of sufficient lengths to accommodate the limited acceleration capabilities of large trucks, and lane widths must be adequate. Special accommodation may be needed to handle longer trucks (e.g., 60 feet or more) at rail-highway grade crossings.

New concepts
      Just as advances in computers and communications technologies are facilitating advances in highway and air traffic control, so are they contributing to a new generation of automatic train control systems (control system). These systems seek to make train schedules, and thus train service, more reliable. The technological infrastructure of automatic train control is particularly vexing for rail systems that are greatly dispersed geographically (e.g., in the United States, Canada, Russia, and China). There, the blocks used to control train movement may be 30 or more miles long, meaning that no train may enter these long blocks while another is within them. The long blocks seriously constrain the movement of trains in a network. Components of an automatic train control system must include a capability to monitor every train in a rail network and, associated with that train, the shipments contained in the railcars, including their expected arrival time at the destination. Vehicle location systems such as satellite-based global positioning systems are an important element in location tracking.

      In order to be truly effective, automatic train control must reside within a broader companywide structure aimed at managing operations. The structure includes explicit long-term policy evaluation, which helps to plan resource allocations in support of operations.

      The most basic decision that an organization must make is whether to schedule trains at all or whether it is adequate to dispatch a train when sufficient traffic is acquired (i.e., a tonnage operation). This type of operation may be most wise for short-line railroads that feed specialized commodities (e.g., ore or grain) to large railroads. The automatic train control system for the large railroad must be able to accommodate the movement of this train to a yard for subsequent dispatch. The tactical scheduling of trains occurs every two to four weeks, with real-time scheduling of tonnage loads in between. Computer-aided dispatching and automatic train control provide capabilities for real-time management of operations. They also provide evaluation data to use in modifying tactical or schedule policy decisions. The system, in addition to monitoring the location of all trains, must contain information on the status of every section of track and whether trains are complying with automated instructions. The system will thus use train control to improve efficiency but also improve safety by assuring compliance by train crews.

Marine traffic control

       navigation is still the principal means of controlling the paths of ships (ship); direction measurements are made by a navigator using, as of old, a knowledge of the movements of the sun and stars and, since the Middle Ages, the magnetic compass or the later development, the gyrocompass. From early times the need to exchange information between ships and with land stations led to the development of visual and audible signal systems. Markers were carried by ships and also laid in channels, and the transmission of messages was accomplished through flag, semaphore, horn, bell, whistle, and light signals leading to the establishment of first national and later international codes. The invention and use of radio, at the beginning of the 20th century, brought a marked improvement in ship communication.

      Considerable advances in mapping were made over the centuries; modern navigation charts show all coasts, submerged obstacles, sea depths, and navigational aids such as lighthouses, lightships, buoys, and radio beacons.

      New forms of steam propulsion and the design of iron ships in the 19th century led to increased ship size. The growth in world trade brought to the fore the problem of establishing consistent avoiding action when vessels approached each other. International rules of the road at sea were laid down in 1863 and have since been periodically updated.

Traffic elements
      Control of ships at sea (ocean) and their ability to avoid potential collisions are a source of primary concern for marine safety. Because the “guideway” for a ship is water, there are limited frictional forces available to hold a ship on course. Laws of physics demonstrate that bodies in motion tend to stay in motion unless acted upon by outside forces. Because of the large mass of ships, large forces are needed to change their velocity and direction. The changes also occur very slowly and over distances of miles for large commercial ships, owing to the low friction of the guideway surface. In this respect, large ships are like trains in that they have very long stopping distances. While they can adjust their lateral position—unlike trains, which must remain on the track—they are unable to do so rapidly. Safety of large ships at sea is thus dominated by concerns for the relative lack of longitudinal and lateral maneuverability of ships to avoid both fixed and moving hazards.

      The maneuverability of any ship is heavily influenced by the environment at the time of the attempted maneuver. Wave actions, tides, and currents all result in water movement around the ship, which must be considered by the pilot in directing the vessel. Wind also can strongly influence ship movement, both for sailing vessels that use wind for power, and for motorized vessels. Limitations in visibility posed by nighttime conditions, fog, rain, or snow also strongly influence ship control and safety; indeed, environment plays the strongest role in ship and in airplane operations. Guideway-related information is important, but its effect is limited. Vessel characteristics, as described earlier, also are extremely important in marine traffic control.

      Communications (communication) between ships and from ship to shore are important elements in marine traffic control. Radio frequencies are allocated for marine use on the FM band, but in busy port or shipping areas these can become quickly oversaturated. Vessel traffic systems (see below) have been proposed to ease communications and manage vessel traffic flow. In clear weather, communication is still conducted by flashing lights and flags. More than any other mode except aviation, communications play a crucial role in marine traffic.

      Control devices for marine traffic include buoys, lights, sound-generating devices, and lighthouses. As with all other modes, rigid standards and regulations exist governing the use and performance of the devices. The International Maritime Organization (IMO) regulates operational procedures for avoiding collisions at sea as well as device design. Lights used to convey vessel status are regulated for specific levels of chromaticity and intensity (in order to be seen at a given distance). Sound-generating devices, including horns, bells and whistles, also are carefully allocated to particular frequencies. Lighthouses continue to be important; increasingly they are unmanned and are monitored by communications and computer equipment.

Conventional control techniques
      Control of ships on the open sea still remains exclusively with the master of the vessel; when other ships are encountered, established rules of steering are practiced. This ancient arrangement—primitive by comparison with the sophisticated and centralized traffic control systems described for road, rail, and aviation—has survived, thanks to the expanse of sea and the relatively few ships sailing upon it. Communication between ships is, therefore, vital in their control, both at sea and within the confined channels of inland waterways. The principal methods of transmitting a signal are visual (that is, by flag, semaphore, or light) or audible (by means of horns or radio). The revised International Code of 1934 includes alphabetic, numeric, and answering flags. Urgent messages can be communicated by single flags, while three-letter groups are used for compass points, bearing, and times. Semaphore signaling employs hand flags, while Morse code can be transmitted visually by searchlights equipped with horizontal control slats or by radio. Ships also use sirens for “in sight” conditions to indicate impending course changes and, generally, for warning purposes in bad visibility.

      The control of ships near coasts is facilitated, both for warning and navigational purposes, by the use of lightships and lighthouses. Channels on the approach to ports are clearly marked by floating buoys (buoy), usually fitted with lights and equipped with sound signals (horns, bells, and whistles) for use in bad weather or at night. The proper provision of buoys and beacons, anchored in their correct position and their subsequent maintenance, is essential for control and safety purposes.

      Buoys are classified by their function into categories denoted by shape, markings, and colour. The approach to an estuary, for example, is marked by a landfall buoy, and main channels by red can-shaped or black cone-shaped buoys. Where channels fork, at junctions, spherical buoys are used to indicate direction to either port or starboard. Other special buoys denote wreck positions, danger areas, and middle ground, the region near the centre of the channel where ships can safely move.

New concepts
      The management of traffic and safety on a given body of water has been previously described as an assemblage of related but distinct systems. These systems are integrated in a vessel traffic system (VTS), which can be defined as an assortment of personnel, procedures, equipment, and regulations assembled for the purpose of traffic management in a given body of water. A VTS includes some means of area surveillance, traffic separation, vessel movement reporting, a traffic centre, and enforcement capability. These functions are not dissimilar to the advanced train control and management systems discussed in the rail section.

      VTS seeks to meet the goals of the vessel traffic centre (to manage traffic) and the ship (to move through the area) by integrating space management, position fixing, track monitoring, and collision avoidance. The vessel traffic centre (VTC) coordinates ship passage in an area so as to be orderly and predictable. Position fixing may be done by both the VTC and ship and is critical to the next function, track monitoring, which is based upon cumulative position fixing. The last function, collision avoidance, is a new area of responsibility for VTCs. This function has traditionally been the responsibility of the respective ships' pilots and should remain so. VTC can, if so equipped, provide advance warning of impending collision and may allow the pilot extra time to maneuver.

      VTSs are proposals to once again harness the power of advanced communications and computers to improve vessel safety and efficiency. The extremely large size of ocean vessels poses risk for the environment if hazards are not properly managed; the ecological disasters resulting from oil spills throughout the world are testimony to the importance of marine safety. While accidents involving loss of life are few, the prospect remains for high mortality given passenger loads (frequently in the thousands of passengers). VTS exists in limited application around the world and is likely to expand for several more decades.

Paul P. Jovanis F.D. Hobbs

Additional Reading
Theories and concepts underlying road traffic control are discussed in Adolf D. May, Traffic Flow Fundamentals (1990); and William R. McShane and Roger P. Roess, Traffic Engineering (1990). For air traffic control, see Robert Horonjeff and Francis X. McKelvey, Planning and Design of Airports, 3rd ed. (1983). Coverage of rail traffic control can be found in the series of Transportation Research Record (irregular), published by the Transportation Research Board of the National Research Council in Washington, D.C. Marine transportation control is thoroughly treated in A.N. Cockcroft and J.N.F. Lameijer, A Guide to the Collision Avoidance Rules, 4th ed. (1990); and Charles W. Koburger, Jr., Vessel Traffic Systems (1986).Paul P. Jovanis

* * *

Universalium. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Traffic control — may refer to:* Air traffic control * Road traffic control * Traffic control in Shipping lanes * Urban (peak hour) traffic management * Manipulating traffic to ensure Quality of service in telecommunications * 2006 independent film …   Wikipedia

  • traffic control — srauto valdymas statusas T sritis automatika atitikmenys: angl. flow control; traffic control vok. Ablaufregelung, f; Flußregelung, f; Flußsteuerung, f; Verkehrssteuerung, f rus. управление потоком, n pranc. commande de flux, f; régulation de… …   Automatikos terminų žodynas

  • traffic control — kanalo valdymas statusas T sritis automatika atitikmenys: angl. channel control; traffic control vok. Kanalsteuerung, f rus. управление каналом, n pranc. commande de canal, f …   Automatikos terminų žodynas

  • traffic control — telefoninės apkrovos valdymas statusas T sritis radioelektronika atitikmenys: angl. traffic control vok. Verkehrsdichtesteuerung, f rus. управление телефонной нагрузкой, n pranc. contrôle du trafic, m …   Radioelektronikos terminų žodynas

  • traffic control — traffic police, branch of the police which is responsible for enforcing traffic laws …   English contemporary dictionary

  • traffic control police — kelių policija statusas T sritis Gynyba apibrėžtis Kariuomenės vado ir (ar) valstybės vadovybės įgalioti asmenys reguliuoti judėjimą, užkirsti kelią kelių eismo pažeidimams ir (ar) apie juos pranešti. atitikmenys: angl. traffic control police… …   NATO terminų aiškinamasis žodynas

  • traffic control — noun control of the flow of traffic in a building or a city • Hypernyms: ↑control • Hyponyms: ↑point duty …   Useful english dictionary

  • traffic control police — Any persons ordered by a military commander and/or by national authorities to facilitate the movement of traffic and to prevent and/or report any breach of road traffic regulations …   Military dictionary

  • traffic control signal — noun see traffic signal …   Useful english dictionary

  • Air traffic control — For the Canadian musical group, see Air Traffic Control (band). Airport Traffic Control Towers (ATCTs) at Amsterdam s Schiphol Airport, the Netherlands …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”