Lebesgue, Henri-Léon

Lebesgue, Henri-Léon

▪ French mathematician
born June 28, 1875, Beauvais, France
died July 26, 1941, Paris
 French mathematician whose generalization of the Riemann integral (analysis) revolutionized the field of integration.

      Lebesgue was maître de conférences (lecture master) at the University of Rennes from 1902 until 1906, when he went to Poitiers, first as chargé de cours (assistant lecturer) of the faculty of sciences and later as professor. In 1910 he went to the Sorbonne in Paris as maître de conférences in mathematical analysis, and in 1921 he became a professor at the Collège de France. In 1917 he was awarded the Prix Saintour, and in 1922 he was elected to the French Academy of Sciences (Sciences, Academy of). He was made an honorary member of the London Mathematical Society in 1924 and a foreign member of the Royal Society of London in 1930.

      One of the greatest mathematicians of his day, Lebesgue made an important contribution to topology with his covering theorem (which helps define the dimension of a set). He also worked on Fourier series (analysis) and potential theory, but his main work was on integration theory.

      Toward the close of the 19th century, mathematical analysis was limited effectively to continuous functions, and artificial restrictions were necessary to cope with discontinuities that cropped up with greater frequency as more exotic functions were encountered. The Riemann method of integration was applicable only to continuous and a few discontinuous functions. Influenced by the work of Émile Borel (Borel, Émile), Camille Jordan (Jordan, Camille), and others, Lebesgue formulated a new theory of measure and framed a new definition of the definite integral, which he presented in his doctoral thesis at the Sorbonne in 1902. The Lebesgue integral is one of the great achievements of modern real analysis, and Lebesgue integration was instrumental in greatly expanding the scope of Fourier analysis.

      In addition to about 50 papers, Lebesgue wrote two major books, Leçons sur l'intégration et la recherche des fonctions primitives (1904; “Lessons on Integration and Analysis of Primitive Functions”) and Leçons sur les séries trigonométriques (1906; “Lessons on the Trigonometric Series”).

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Lebesgue , Henri Léon — (1875–1941) French mathematician Lebesgue, who was born at Beauvais in northern France, studied at the Ecole Normale Supérieure. He obtained posts at Rennes (1902) and Poitiers (1906) universities, at the Sorbonne (1910), and at the Collège de… …   Scientists

  • Lebesgue, Henri León — ► (1875 1941) Matemático francés. A partir de su nueva teoría de la medida dio una nueva definición de integral que lleva su nombre …   Enciclopedia Universal

  • Henri-Leon Lebesgue — Henri Léon Lebesgue Pour les articles homonymes, voir Lebesgue. Henri Léon Lebesgue Henri Lebesgue …   Wikipédia en Français

  • Henri Leon Lebesgue — Henri Léon Lebesgue Pour les articles homonymes, voir Lebesgue. Henri Léon Lebesgue Henri Lebesgue …   Wikipédia en Français

  • Henri Léon Lebesgue — Pour les articles homonymes, voir Lebesgue. Henri Léon Lebesgue Henri Lebesgue …   Wikipédia en Français

  • Henri Leon Lebesgue — Henri Léon Lebesgue Henri Léon Lebesgue Henri Léon Lebesgue [ɑ̃ʁiː leɔ̃ ləˈbɛg] (* 28. Juni 1875 in …   Deutsch Wikipedia

  • Henri Léon Lebesgue — Henri Léon Lebesgue [ …   Deutsch Wikipedia

  • Henri Léon Lebesgue — Henri Lebesgue. Nacimiento 28 de junio de 1875 …   Wikipedia Español

  • Henri-Léon Lebesgue — Pour les articles homonymes, voir Lebesgue. Henri Léon Lebesgue Henri Lebesgue Naissance 28 juin …   Wikipédia en Français

  • Henri Léon Lebesgue — (28 de junio de 1875 26 de julio de 1941), matemático francés. Nació en Beauvais, Oise, Picardie, Francia. Estudió en la Ecole Normale Supérieure y en el período 1899 1902 impartió clases en el Liceo de Nancy. Con base en el trabajo de otros… …   Enciclopedia Universal

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”