Grothendieck, Alexandre

Grothendieck, Alexandre

▪ French mathematician
born March 28, 1928, Berlin, Germany

      German French mathematician who was awarded the Fields Medal in 1966 for his work in algebraic geometry.

      After studies at the University of Montpellier (France) and a year at the École Normale Supérieure in Paris, Grothendieck received his doctorate from the University of Nancy (France) in 1953. After appointments at the University of São Paulo in Brazil and the University of Kansas and Harvard University in the United States, he accepted a position at the Institute of Advanced Scientific Studies, Bures-sur-Yvette, France, in 1959. He left in 1970, eventually settling at the University of Montpellier, from which he retired in 1988.

      Grothendieck was awarded the Fields Medal at the International Congress of Mathematicians in Moscow in 1966. During the 19th and early 20th centuries there was an enormous growth in the area of algebraic geometry, largely through the tireless efforts of numerous Italian mathematicians. But a more abstract point of view emerged in the mid 20th century, and a great deal of the change is due to the work of Grothendieck, who built on the mathematical work of André Weil (Weil, André), Jean-Pierre Serre (Serre, Jean-Pierre), and Oscar Zariski. Using category theory (mathematics, foundations of) and ideas from topology, he reformulated algebraic geometry so that it applies to commutative rings (ring) (such as the integers) and not merely fields (such as the rational numbers) as hitherto. This enabled geometric methods to be applied to problems in number theory and opened up a vast field of research. Among the most notable resulting advances were Gerd Faltings (Faltings, Gerd)'s work on the Mordell conjecture and Andrew Wiles (Wiles, Andrew John)'s solution of Fermat's last theorem.

      Grothendieck's publications include Produits tensoriels topologiques et espaces nucléaires (1955; “Topological Tensor Products and Nuclear Spaces”); with Jean A. Dieudonné (Dieudonné, Jean), Éléments de géométrie algébrique (1960; “Elementary Algebraic Geometry”); and Espaces vectoriels topologiques (1973; “Topological Vector Spaces”). A Festschrift containing articles in honour of Grothendieck's 60th birthday was published in 1990. Late in his career Grothendieck developed a strong interest in political action; his memoir, Récoltes et semailles (1985; “Reaping and Sowing”), is largely concerned with subjects other than mathematics.

* * *


Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Alexandre Grothendieck — en 1970. Naissance 28 mars 1928 Berlin ( …   Wikipédia en Français

  • Grothendieck — Alexandre Grothendieck Alexandre Grothendieck en 1970. Alexandre Grothendieck est un mathématicien apatride, ayant passé la majorité de sa vie en France, né le 28 mars 1928 à Berlin (Allemagne). Lauréat de la …   Wikipédia en Français

  • Alexandre Grothendieck — Alexander Grothendieck, 1970 Alexander Grothendieck (* 28. März 1928 in Berlin) ist ein deutsch französischer Mathematiker. Er ist Begründer einer eigenen Schule der algebraischen Geometrie, deren Entwicklung in den 1960er Jahren maßgeblich… …   Deutsch Wikipedia

  • Grothendieck — Alexander Grothendieck, 1970 Alexander Grothendieck (* 28. März 1928 in Berlin) ist ein deutsch französischer Mathematiker. Er ist Begründer einer eigenen Schule der algebraischen Geometrie, deren Entwicklung in den 1960er Jahren maßgeblich… …   Deutsch Wikipedia

  • Alexandre Grothendieck — es un matemático franco alemán, nacido en Berlín el 28 de marzo de 1928, que durante la segunda mitad del s. XX ha llevado a cabo un extraordinario proceso de unificación de la Aritmética, la Geometría Algebraica y la Topología, dando gran… …   Enciclopedia Universal

  • Alexander Grothendieck — Alexandre Grothendieck Alexandre Grothendieck en 1970. Alexandre Grothendieck est un mathématicien apatride, ayant passé la majorité de sa vie en France, né le 28 mars 1928 à Berlin (Allemagne). Lauréat de la …   Wikipédia en Français

  • Grothendieck's Séminaire de géométrie algébrique — In mathematics, Alexander Grothendieck s Séminaire de géométrie algébrique was a unique phenomenon of research and publication outside of the main mathematical journals, reporting on the work done in 1960–1969 in the eponymous seminar held at the …   Wikipedia

  • Grothendieck topology — In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C which makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a …   Wikipedia

  • Grothendieck universe — In mathematics, a Grothendieck universe is a set U with the following properties:# If x is an element of U and if y is an element of x , then y is also an element of U . ( U is a transitive set.) # If x and y are both elements of U , then { x , y …   Wikipedia

  • Grothendieck's connectedness theorem — In mathematics, Grothendieck s connectedness theorem (harvnb|Grothendieck|2005|loc=XIII.2.1,harvnb|Lazarsfeld|2004|loc=theorem 3.3.16) states that if A is a complete local ring whose spectrum is k connected and f is in the maximal ideal, then… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”