Artin, Emil

Artin, Emil

▪ German mathematician
born March 3, 1898, Vienna, Austria
died Dec. 20, 1962, Hamburg, W.Ger.

      Austro-German mathematician who made fundamental contributions to class field theory, notably the general law of reciprocity.

      After one year at the University of Göttingen, Artin joined the staff of the University of Hamburg in 1923. He emigrated to the United States in 1937, where he taught at Notre Dame University (1937–38), Indiana University, Bloomington (1938–46), and Princeton University (1946–58). In 1958 he returned to the University of Hamburg.

      Artin's early work centred on the analytical and arithmetic theory of quadratic number fields. He made major advances in abstract algebra in 1926 and the following year used the theory of formal-real fields to solve the Hilbert problem of definite functions. In 1927 he also made notable contributions in hypercomplex numbers, primarily the expansion of the theory of associative ring algebras. In 1944 he discovered rings with minimum conditions for right ideals, now known as Artin rings. He presented a new foundation for and extended the arithmetic of semi-simple algebras over the rational number field.

      His theory of braids, set forth in 1925, was a major contribution to the study of nodes in three-dimensional space. Artin's books include Geometric Algebra (1957) and, with John T. Tate, Class Field Theory (1961). Most of his technical papers are found in The Collected Papers of Emil Artin (1965).

* * *


Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Emil Artin — (* 3. März 1898 in Wien; † 20. Dezember 1962 in Hamburg) war ein österreichischer Mathematiker und einer der führenden Algebraiker des 20. Jahrhunderts. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Emil Artin — Saltar a navegación, búsqueda Emil Artin Emil Artin (3 de marzo de 1898 20 de diciembre de 1962) fue un matemático austriaco nacido en Viena que inició su carrera en Alemania, en la …   Wikipedia Español

  • Emil Artin — Pour les articles homonymes, voir Artin. Emil Artin. Emil Artin (3 mars 1898 à Vienne, 20  …   Wikipédia en Français

  • Emil Artin — Infobox Scientist name=Emil Artin birth date = March 3, 1898 birth place = Vienna death date = December 20, 1962 field = MathematicsEmil Artin (March 3, 1898, in Vienna – December 20, 1962, in Hamburg) was an Austrian mathematician. His father,… …   Wikipedia

  • ARTIN (E.) — On peut considérer Artin comme un des fondateurs de l’algèbre contemporaine; par exemple, de l’aveu de son auteur, le livre Moderne Algebra de Van der Waerden, qui fut l’ouvrage de référence pendant trente ans, est issu de leçons professées par… …   Encyclopédie Universelle

  • Artin — may refer to:*The name of a king in the Median Empire, still in use among modern Kurds, Armenians, and Iranians today. *Emil Artin, was an Austrian mathematician. *Michael Artin, is an American mathematician, son of Emil Artin …   Wikipedia

  • Artin — Saltar a navegación, búsqueda Artin puede referir a: Emil Artin Teorema de Artin Wedderburn Función zeta de Artin Mazur Paul Artin Boghossian Obtenido de Artin Categoría: Wikipedia:Desambiguación …   Wikipedia Español

  • Artin — ist ein armenischer männlicher Vorname,[1] der u. a. in der Türkei und im Iran sowie als Familienname vorkommt. Inhaltsverzeichnis 1 Bekannte Namensträger 1.1 Vorname 1.2 Familienname …   Deutsch Wikipedia

  • Emil Artin — (1898 1962). Matemático austriaco nacido en Viena y fallecido en Hamburgo. Enseñó primero en la Universidad de Gotinga y pasó en 1923 a la de Hamburgo. Emigrado en 1937 a Estados Unidos, ejerció la docencia en varias universidades de ese país.… …   Enciclopedia Universal

  • Artin reciprocity law — The Artin reciprocity law, established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of the global class field theory.[1] The term reciprocity law refers to a long line of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”