Nobel Prizes

Nobel Prizes
▪ 2009


Prize for Peace
      The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic, religious, and racial differences. The Norwegian Nobel Committee said that his efforts had “contributed to a more peaceful world and to ‘fraternity between nations' in Alfred Nobel's spirit.” The committee added that “he has shown what role mediation of various kinds can play in the resolution of international conflicts.”

      Ahtisaari was born on June 23, 1937, in Viipuri, Fin. (now Vyborg, Russia). When the city of his birth was ceded to the Soviet Union in 1940 after the Russo-Finnish War, the boy and his family remained in Finland, moving first to Kuopio and then to Oulu. He studied at the University of Oulu, receiving a diploma in 1959, and then worked as a primary-school teacher. Beginning in the early 1960s he trained teachers in Pakistan and then in Finland. After joining (1965) the Finnish Ministry for Foreign Affairs, Ahtisaari held a number of positions. He served (1973–76) as ambassador to Tanzania and was (1975–76) an envoy to Zambia, Somalia, and Mozambique. He functioned (1977–81) as the United Nations commissioner for Namibia and twice (1978 and 1989–90) served as a UN special representative to that country. In his earliest major success in diplomacy, he helped guide Namibia's path to independence in 1990 after it had endured years of conflict with South Africa.

      As the candidate of the Social Democratic Party, Ahtisaari was elected president of Finland in 1994. Upon leaving the presidency in 2000, he formed the Crisis Management Initiative (CMI), serving as its chairman. Under the auspices of the CMI, the UN, and other organizations, he undertook a number of peace missions around the world, including, in 2000, an appointment as a weapons inspector in Northern Ireland in support of the decommissioning of the Irish Republican Army. In 2005 Ahtisaari helped settle the conflict in Aceh province in Indonesia, with Indonesian government forces agreeing to withdraw after 30 years of fighting in return for the province's dropping its demands for independence. For the next two years he served as a UN special envoy in Kosovo, attempting to mediate between Kosovo's push for independence and the Serbian government, and in 2008 he undertook mediation between Sunni and Shiʿite Muslims in Iraq. Over the years he also worked in other parts of the world, including Central Asia and the Horn of Africa.

      Ahtisaari was known for his charm and sense of humour but was also recognized as a man who could be blunt and tough in negotiations between adversaries. He received many honorary degrees and a number of international awards, including the J. William Fulbright Prize for International Understanding in 2000 and the UNESCO Félix Houphouët-Boigny Peace Prize in 2008.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences in 2008 was awarded to American Paul Robin Krugman for his development of a new theory of international trade and of economic geography. Through the integration of economies of scale into general equilibrium models, Krugman furthered understanding of both the determinants of trade and the location of production in an increasingly globalized post-World War II economy. His research findings explained how the consumer's desire for variety and choice enabled countries to achieve the economies of scale required to trade profitably in similar products. This led to later research on the “new economic geography,” which explained the location of jobs and businesses and why there was acceleration in the pace of urbanization and a population decline in rural areas.

      Through his new theory of trade, Krugman demonstrated why rich countries trade with each other in similar goods (such as the trading of cars between Japan and Germany) when there is no apparent comparative advantage. His analysis was based on the assumption of economies of scale, where mass production leads to a fall in unit cost, but more crucially on the principle that consumers want diversity in the products available to them. Traditional trade theories, from the early 1800s (notably British economist David Ricardo's laissez-faire Iron Law of Wages) to the 1920s and '30s (in particular the Heckscher-Ohlin theory established by Swedish economists Eli Filip Heckscher and Bertil Ohlin), suggested that trading partnerships were based on national differences, as countries specialized in producing what they did best and imported the rest. In general, these theories provided an adequate explanation of most international trade until the 1950s, when like-for-like trade began to increase and new international trade patterns emerged. Krugman's trade model, which he detailed in an article in the Journal of International Economics in 1979, showed that when trade barriers are removed, larger markets are created. While the increased global competition may reduce the number of foreign firms, the ensuing trade benefits not from specialization but rather from economies of scale, competition, and the wider choice and variety of goods available to consumers (as in the global automobile industry).

      In his 1991 paper “Increasing Returns and Economic Geography,” Krugman developed a comprehensive theory of location of labour and firms in which he examined the proximity factor that drives urbanization. Large firms might cluster near a large market in order to exploit economies of scale and to minimize transport costs to their customers. Previous theories had assumed that firms clustered geographically in order to benefit from any spin-off in terms of expertise that they might glean from each other.

      Krugman was born in New York City on Feb. 28, 1953, and was educated at Yale University (B.A., 1974) and the Massachusetts Institute of Technology (Ph.D., 1977), where he then was a member of the economics faculty from 1979 to 2000. He left MIT for a year (1982–83) to work as the chief staffer for international economics on Pres. Ronald Reagan's Council of Economic Advisers and again for a hiatus (1994–96) to teach at Stanford University. From 1979 he also worked as a research associate at the National Bureau of Economic Research. In 2000 he became a professor of economics and international affairs at the Woodrow Wilson School of Public and International Affairs at Princeton University.

      Krugman was a prolific and sometimes controversial writer, with more than 20 books and 200 papers in professional journals to his credit. His notable books include scholarly works such as The Risks Facing the World Economy (1991), Currencies and Crises (1992), and World Savings Shortage (1994); economics textbooks such as Microeconomics (2004) and Macroeconomics (2005); and nonacademic best sellers such as The Return of Depression Economics (1999), The Great Unravelling (2003), and The Conscience of a Liberal (2007). He gained a broader readership through his regular magazine columns in Slate (1996–99) and Fortune (1997–99) and especially through his politically partisan and frequently humorous Op-Ed column in the New York Times (from 2000). Prior to the Nobel, Krugman received (1991) the John Bates Clark medal, given every two years to an economist under age 40 who was judged to have made the most significant contribution to economic knowledge.

Janet H. Clark

Prize for Literature
      The 2008 Nobel Prize for Literature was awarded to French writer J.-M.G. Le Clézio, one of the preeminent literary figures of his generation. He was known for his intricate, seductive fiction and distinctive works of nonfiction that mediated between the past and the present, juxtaposing the modern world with a primordial landscape of ambiguity and mystery. Le Clézio—the 14th French-language writer to be honoured as the laureate in literature and the first since Claude Simon received the prize in 1985—was cited by the Swedish Academy as an “author of new departures, poetic adventure and sensual ecstasy, explorer of a humanity beyond and below the reigning civilization.” Le Clézio acknowledged an expansive range of literary influences, including Homer, Milton, Boccaccio, Rabelais, Juan Rulfo, Robert Louis Stevenson, and James Joyce, and was prolific in a variety of genres, often merging narrative forms and techniques. Accomplished as a novelist, children's author, and essayist, Le Clézio forged a literature of universal themes, from life and death, rebirth, and redemption to immigration and displacement, alienation, and the loss of innocence.

      Jean-Marie Gustave Le Clézio was born on April 13, 1940, in Nice, France; he was descended from a Breton family that had immigrated to the formerly French and subsequently British colony of Mauritius. Bilingual in French and English, he spent part of his childhood in Nigeria before completing his secondary education in France. After studying for a time in England, he returned to France, where he earned an undergraduate degree (1963) from the Institut d'Études Littéraires (now the University of Nice) and a master's degree (1964) from the University of Aix-en-Provence. In 1983 he completed a doctorate of letters at the University of Perpignan, France. Le Clézio traveled extensively and immersed himself in the study of other cultures, particularly the indigenous peoples of Mexico and Central America, which he wrote about in Trois villes saintes (1980), Le Rêve mexicain ou la pensée interrompue (1988; The Mexican Dream; or, The Interrupted Thought of Amerindian Civilizations, 1993), and La Fête chantée (1997).

      Although he emerged within the French literary milieu dominated by writers of the nouveau roman (new novel) such as Simon, Alain Robbe-Grillet, and Marguerite Duras, Le Clézio developed independently from his contemporaries and established himself early in his career as an author of singular achievement and temperament. He made his debut as a novelist with the publication in 1963 of Le Procès-verbal (The Interrogation, 1964) and gained widespread acclaim as a young author when the book—which had been sent as an unsolicited manuscript to the prestigious Gallimard publishing house—was awarded the Prix Renaudot. Other publications that further enhanced Le Clézio's reputation in France and abroad included the short-story collection La Fièvre (1965; Fever, 1966) and the novels Le Déluge (1966; The Flood, 1967), Terra amata (1967; Terra Amata, 1969), La Guerre (1970; War, 1973), and Les Géants (1973; The Giants, 1975). Le Clézio was drawn to the marginalized of society and offered a compassionate and evocative portrayal of the disenfranchised and displaced in search of meaning, identity, and reintegration. For example, Lalla, the protagonist of his acclaimed novel Désert (1980), is a North African Berber separated from her past and her cultural inheritance when she was forced to flee her desert homeland; she returns pregnant and resolved both to perpetuate her tribal inheritance and to embrace her legacy of memory and transcendence.

      Beginning with the publication in 1991 of Onitsha (Onitsha, 1997), Le Clézio turned increasingly to semiautobiographical works such as the novels La Quarantaine (1995) and Révolutions (2003). In L'Africain (2004), Le Clézio recounted the childhood experience of being reunited with his father in the aftermath of World War II. Later works include Ballaciner (2007), a personal tribute to the art of filmmaking and its relationship to literature, and the novel Ritournelle de la faim (2008). As a writer Le Clézio was primarily a storyteller and craftsman for whom the act of writing was one of the “greatest pleasures in life.” He said, “I feel that the writer is just a kind of witness of what is happening. A writer is not a prophet, is not a philosopher, he's just someone who is witness to what is around him.”

Steven R. Serafin

Prize for Chemistry
      The 2008 Nobel Prize for Chemistry was awarded to a Japanese and two American chemists for the discovery and development of a protein called the green fluorescent protein (GFP). Sharing the prize equally were Osamu Shimomura of the Marine Biological Laboratory, Woods Hole, Mass., Martin Chalfie of Columbia University, New York City, and Roger Y. Tsien of the University of California, San Diego. Their work with GFP opened a vast set of pathways and opportunities for studying biological processes at the molecular level. The protein provided a visual signal that scientists learned to use in many ingenious ways to probe protein activity, such as when and where proteins are produced and how different proteins or parts of proteins move and approach each other within a cell.

      GFP, a naturally occurring substance in the jellyfish Aequorea victoria, consists of 238 amino acids. Three were of particular interest: serine at position 65, tyrosine at the next position, 66, and glycine at position 67. Together with oxygen, these amino acids undergo a chemical reaction in which they lose their initial identities and form a light-sensitive unit called a chromophore. The chromophore is fluorescent—that is, it absorbs light of one wavelength (blue or ultraviolet) and emits light of a different wavelength (green). One of the most important characteristics of GFP is its ability to be joined to other proteins without affecting their function. In this way GFP could be used as a “signal flag” on virtually any protein almost anywhere it might be found. Moreover, investigators determined how to modify GFP and make similar substances fluoresce in colours that ranged through the spectrum from blue to deep red.

      A simple, powerful way of using GFP and GFP-like markers was to use them in pairs in which the specific wavelengths of light emitted by one of the markers would excite the other to fluoresce, a process called fluorescence resonance energy transfer (FRET). The two markers had to be relatively near each other for the energy transfer to occur, which could then be verified by detecting the coloured light emitted by the second marker. This method and other, more complex variants could be used, for example, to study how specific proteins moved within a cell. A sophisticated variant for studying protein-protein interaction had one part of the GFP attached to one of the proteins of interest and the rest of the GFP attached to the other. When the two proteins came together, they formed a fully functioning GFP that then showed itself by fluorescing.

      The green fluorescence of Aequorea victoria was discovered in 1955. In the 1960s Shimomura showed that the fluorescence is produced by the protein that was later named GFP. American biochemist Douglas Prasher analyzed the chromophore in GFP in the 1980s and subsequently found and cloned the gene responsible for making GFP. In 1993 Chalfie showed that the gene that instructs the cell to make GFP could be embedded in the nucleic acids of other organisms, first in the bacterium Escherichia coli and then in the transparent nematode Caenorhabditis elegans, so that they would make their own GFP. This discovery opened the possibility of using GFP in virtually any organism. Tsien then showed, beginning in 1994, that oxygen is required for GFP fluorescence and that point mutations in the gene could shift the wavelength and intensity of the fluorescence. Tsien also helped to determine the structure of GFP and described how to use GFP and its variants to study the role and behaviour of calcium ions in living systems.

      Osamu Shimomura was born on Aug. 27, 1928, in Fukuchiyama, Japan. In 1960, after receiving a Ph.D. in organic chemistry from Nagoya (Japan) University, he became a researcher at Princeton University. He moved to the Marine Biological Laboratory in 1982. Shimomura also worked at Boston University Medical School. Martin Chalfie was born on Jan. 15, 1947, in Chicago. In 1977 he received a Ph.D. in neurobiology from Harvard University. He joined the faculty at Columbia University, where he became a professor in 1982. Chalfie was a member (from 2004) of the U.S. National Academy of Sciences. Roger Tsien was born on Feb. 1, 1952, in New York City. In 1977 he received a Ph.D. in physiology from the University of Cambridge. He moved to the University of California, Berkeley, in 1981, and in 1989 he became a professor at the University of California, San Diego, and a Howard Hughes Medical Institute investigator. Tsien also was a member (from 1998) of the U.S. National Academy of Sciences.

R. Stephen Berry

Prize For Physics
      The 2008 Nobel Prize for Physics was awarded to a Japanese-born American physicist, Yoichiro Nambu, and two Japanese physicists, Makoto Kobayashi and Toshihide Maskawa, for their theoretical work in particle physics that described broken symmetry in particle interactions. Nambu, of the Enrico Fermi Institute at the University of Chicago, was awarded one-half of the $1.4 million prize for his discovery and description of a mechanism called spontaneous broken symmetry. Kobayashi, of the High Energy Accelerator Research Organization (KEK) in Japan, and Maskawa, of the Yukawa Institute for Theoretical Physics at Kyoto University, each received one-fourth of the prize for their work on symmetry violation that predicted the existence of a previously unknown family of quarks (a group of fundamental subatomic particles).

      The apparent symmetry of the basic building blocks of the universe was a subject of intense interest to fundamental particle physicists. As the construction of large particle accelerators in the mid-20th century made possible the study of a greater variety of fundamental particles, it appeared that each particle was paired with an antiparticle. The negatively charged electron, for example, had an antiparticle (the positron) of the same mass but opposite charge. In terms of its properties, each antiparticle looked like the mirror image of its corresponding particle, and when particles and their antiparticles met, mutual annihilation occurred. If particles and antiparticles were symmetrical, however, physicists were presented with the problem of accounting for the universe's huge preponderance of particles over antiparticles, which was an indication of a lack of symmetry in the universe as a whole. Also, as fundamental particles and their interactions were observed in physics experiments, it appeared for a time that all such interactions were symmetrical. For example, interactions of particles and the mirror image of the interactions appeared to be the same, and this property, named mirror symmetry, gave rise to a conservation law called parity conservation. Interactions of electrically charged particles also appeared to be symmetrical, and the combination of symmetry in the charge and parity between particle and antiparticle was called CP symmetry. Investigations into the decay of certain particles revealed, however, that there were exceptions to mirror symmetry (1956) and to CP symmetry (1964).

      From theoretical research on superconductivity that he conducted in the late 1950s, Nambu produced a theory—the theory of spontaneous symmetry breaking—that demonstrated how asymmetries could appear in elementary particle physics. The theory was therefore important in the development of the so-called standard model used to describe the fundamental particles that make up matter.

      By 1970 it had been suggested that massive particles such as protons and neutrons could be built up from fractionally charged constituents named quarks and that quarks came in three flavours, or types, which were referred to as up, down, and strange. Strong evidence for a fourth flavour—charm—was put forward in 1970, which implied the existence of two families of quarks. In 1972 Kobayashi and Maskawa expanded upon the work of the Italian physicist Nicola Cabibbo and investigated the theory of how quarks interact (the so-called strong interaction) in terms of the CP violation. This led them to postulate that there must be three families of quarks. This extension of the standard model was eventually verified experimentally with the discoveries of the bottom quark (1977) and the top quark (1995).

      Yoichiro Nambu was born on Jan. 18, 1921, in Tokyo. He received a B.S. (1942) and a doctorate in science (1952) from the University of Tokyo. After serving as an associate professor at Osaka City University (1949–52), he spent two years at the Institute for Advanced Study in Princeton, N.J., before moving to the University of Chicago in 1954. He served on the faculty at the university until retiring as professor emeritus in 1991. Nambu became an American citizen in 1970. He received many awards, including the U.S. National Medal of Science (1982), the Dirac Medal (1986), and the Wolf Prize in physics (1994/1995). He was a member of both the U.S. National Academy of Sciences and the American Academy of Arts and Sciences and an honorary member of the Japan Academy.

      Makoto Kobayashi was born on April 7, 1944, in Nagoya, Japan. He received a Ph.D. in 1972 from Nagoya University, and in 1979 he became an assistant professor at KEK in Tsukuba Science City. In 1989 he was appointed professor and designated as the head of Physics Division II. He became the director of the Institute of Particle and Nuclear Studies at KEK in 2003, and he was named professor emeritus in 2006. Among the awards he received were the J.J. Sakurai Prize (1985) for theoretical particle physics (shared with Maskawa), the Japan Academy Prize (1985), and the Japanese Person of Cultural Merit Award (2001).

      Toshihide Maskawa (also spelled Masukawa) was born Feb. 7, 1940, in Nagoya, Japan. In 1967 he received a Ph.D. from Nagoya University. He taught at the University of Tokyo's Institute of Nuclear Study and at Kyoto Sangyo University. Maskawa was director of the Yukawa Institute for Theoretical Physics at Kyoto University from 1997 to 2003, when he became professor emeritus. In 1985 Maskawa and Kobayashi were the first recipients awarded the J.J. Sakurai Prize.

David G.C. Jones

Prize for Physiology or Medicine
      The 2008 Nobel Prize for Physiology or Medicine was awarded to three scientists—one German and two French—for their discoveries of viruses that seriously harm human health. Harald zur Hausen, professor emeritus and former chairman and science director at the German Cancer Research Centre, Heidelberg, was awarded one-half of the prize for the discovery of human papillomaviruses (HPVs) that cause cervical cancer. Luc Montagnier, director at the World Foundation for AIDS Research and Prevention, Paris, and Françoise Barré-Sinoussi, professor and director of the retroviral infections unit at the Pasteur Institute in Paris, shared the other half of the award for their discovery of human immunodeficiency virus (HIV), the cause of the immune-system disorder AIDS.

      In the early 1970s zur Hausen argued that HPV caused cervical cancer, the second most common cancer in women, but few scientists agreed with him. What was widely known at the time was that there were many strains of HPV, and although some strains targeted the genitals, they did not appear to induce anything beyond benign warts. Assuming that tumour cells would contain viral DNA, zur Hausen spent more than 10 years in efforts to isolate and identify an HPV agent for cervical cancer. His findings demonstrated that HPV comprised a diverse family of many harmless strains and at least two oncogenic, or cancer-causing, strains—HPV 16 and HPV 18. Zur Hausen discovered HPV 16 in 1983; the following year he cloned both strains from cervical cancer patients. Subsequent studies documented the two strains in more than 70% of all cervical cancer cases worldwide. His discoveries enabled researchers to develop successful vaccines that afforded more than 95% protection from infection by HPV 16 and HPV 18.

      In the early 1980s Montagnier, heading a team that included Barré-Sinoussi, began looking for a viral cause for AIDS. The investigation of viral particles from infected lymph nodes of AIDS patients revealed that the infectious agent was a retrovirus that replicated in immune-system cells called helper T lymphocytes. Further study helped characterize it as a lentivirus, or “slow” virus—the first known to infect humans. The gradual but massive replication of the virus after infection extensively destroyed lymphocytes and thereby severely impaired an individual's immune system. The findings of Montagnier and Barré-Sinoussi were a crucial factor that sped development of new antiviral drugs and diagnostics.

      During the same period, American scientist Robert Gallo also studied the virus that became known as HIV, and he published his findings a short time after Montagnier's team. Over the ensuing years there was considerable controversy over who first isolated the virus. Montagnier's team, however, was eventually acknowledged as having discovered the virus.

      Zur Hausen was born on March 11, 1936, in Gelsenkirchen, Ger. After earning an M.D. from the University of Düsseldorf in 1960, he conducted postdoctoral research at the university's Institute of Microbiology (1962–65) and at the Children's Hospital of Philadelphia (1966–69). Returning to Germany from the U.S., zur Hausen continued his research on viruses at several German universities. He joined the German Cancer Research Center in 1983 as scientific director and chairman, and he remained there until retiring as professor emeritus in 2003.

      Montagnier was born on Aug. 18, 1932, in Chabris, France. He received a degree in science (1953) from the University of Poitiers, France, and an M.D. (1960) from the University of Paris. He worked on RNA viruses at laboratories in France and England before he joined (1972) the Pasteur Institute in Paris. After establishing (1993) the World Foundation for AIDS Research and Prevention, Montagnier accepted an endowed chair at Queens College, New York City, where he headed (1998–2001) the Center for Molecular and Cellular Biology. He returned to the Pasteur Institute in 2001 as professor emeritus.

      Barré-Sinoussi was born on July 30, 1947, in Paris. She received a Ph.D. (1975) from the Pasteur Institute in Garches, France, and then undertook postdoctoral research on retroviruses at the National Cancer Institute, Bethesda, Md. Barré-Sinoussi returned to Europe in 1975 to join the Pasteur Institute. In 1996 she became head of the institute's Retrovirus Biology Unit, which was later renamed the Regulation of Retroviral Infections Unit.

Linda Berris

▪ 2008

Nobels in 2007 were awarded to a former U.S. vice president (and a UN agency); to a British writer whose works chronicled the social and political upheavals of the 20th century; to scientists for work on surface chemical reactions, electrical resistance related to magnetism, and targeted genetic alterations in mice; and to economists who formulated mechanism design theory.

Prize for Peace
 The Nobel Prize for Peace was shared in 2007 by the Intergovernmental Panel on Climate Change (IPCC), an international organization of some 2,000 scientists, and by Al Gore, former vice president of the U.S. and long an advocate for better stewardship of the environment. In announcing the award, the Norwegian Nobel Committee said that climate change could have far-reaching consequences, including “increased danger of violent conflicts and wars.” The committee cited the recipients' “efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change.”

      The IPCC was established in 1988 by the World Meteorological Organization and the United Nations Environment Programme to study the science of climate change, along with the impact on humans and ways of reducing and coping with such change. The Nobel committee said that “the IPCC has created an ever-broader informed consensus about the connection between human activities and global warming.” The IPCC did not itself conduct research but rather reviewed the published work of scientists in the field. It had three sections—one to examine climate and climate change, another to study the social and economic effects of such change and methods of adapting to it, and a third to analyze ways in which the emission of greenhouse gases and other harmful activities might be controlled. In addition, the IPCC maintained the Task Force on National Greenhouse Gas Inventories. The IPCC regularly published reports, and it provided comprehensive assessments of its findings in 1990, 1995, 2001, and 2007.

      Albert Arnold Gore, Jr., was born on March 31, 1948, in Washington, D.C., the son of a U.S. representative and senator from Tennessee. He received a B.A. degree (1969) from Harvard University and from 1969 to 1971 served in the U.S. Army in Vietnam as a military reporter. From 1971 to 1976 he was a reporter for the Nashville Tennessean and studied philosophy and law at Vanderbilt University. He was elected in 1976 to the first of four terms in the U.S. House of Representatives and was elected in 1984 to the Senate and reelected in 1990. During his years in Congress, he gained a reputation for knowledge of foreign affairs, technology, and environmental issues. His book Earth in the Balance: Ecology and the Human Spirit was published in 1992. That same year he was chosen by Bill Clinton as his vice presidential running mate, and Gore served as vice president from 1993 to 2001. He was the Democratic nominee for president in 2000, and although he won a majority of the popular vote, he lost the election to George W. Bush in the electoral college. Following his defeat, Gore taught and renewed his attention to environmental problems. His 2006 film An Inconvenient Truth won the 2007 Academy Award as the best feature-length documentary. In announcing the Nobel award, the committee said that Gore's “strong commitment, reflected in political activity, lectures, films and books, has strengthened the struggle against climate change.” Although he was derided by the political right and sometimes criticized for his alarmist approach, the committee praised Gore as “probably the single individual who has done most to create greater worldwide understanding of the measures that need to be adopted.”

Robert Rauch

Prize for Economics
      In 2007 the Nobel Memorial Prize in Economic Sciences was awarded equally to Polish American Leonid Hurwicz and Americans Eric S. Maskin and Roger B. Myerson for the initiation and development of mechanism design theory, a branch of game theory that allows people to distinguish those situations in which markets work well from those in which they do not. The tools the three men developed enabled economists to determine which institutions, or allocation mechanisms, are most appropriate for minimizing the economic losses generated by private information. The theory also explained why there is often not a good market solution to the problem of providing public goods in situations in which the consumption by one person does not prejudice consumption by another (as in the case of television programs). Their work provided a better understanding of why centrally planned economic systems often fail. Mechanism design also was able to find, or create, alternatives to a competitive market system when action was required for the greater public good.

      Hurwicz originated (1960) mechanism design theory, defining it as a game in which the players send messages to each other or to a central message centre. At the same time, a previously specified rule to every collection of messages assigns an outcome, such as an allocation of goods and services. On the basis of assumptions about the participants' preferences, each rule induces at least one predicted outcome (equilibrium), and this enables the outcomes of markets or marketlike institutions to be compared with those of alternative trading institutions. In 1972 Hurwicz introduced the concept of incentive compatibility, which was integral to fostering later developments.

      Maskin helped to broaden the scope of mechanism design by developing (1977) a concept known as implementation theory. While the revelation principle (formulated in 1973 by philosopher Allan Gibbard) simplified the analysis of mechanism design by allowing the researcher to isolate small subclasses of mechanisms (direct mechanisms), a significant problem remained. In many cases one equilibrium might offer the best outcome within a mechanism, but there could be other, inferior equilibria if, say, the parties involved were not totally honest about the information that they held. To overcome this, incentives could ensure that each party achieved its objective by being honest.

      Myerson discovered a fundamental connection between the allocation of resources to be implemented and the monetary transfers required to persuade participants to disclose their information honestly. His revenue equivalence theorem was adopted widely in the design of auctions, in which mechanism design theory frequently specifies the type of auction that will yield the most revenue for the seller. In 1979 Myerson, Maskin, and others extended the revelation principle and pioneered its application to specific economic problems, including auctions.

      Hurwicz, the oldest person ever to receive a Nobel Prize, was born on Aug. 21, 1917, in Moscow, but in 1919 his family returned to their native Poland. He was educated at the University of Warsaw (LL.M., 1938) and at the London School of Economics, where he attended courses taught by Hungarian economist Nicholas Kaldor. In 1939 Hurwicz's studies at the Graduate Institute of International Studies in Geneva were aborted because of World War II, and a year later he immigrated to the U.S., where he completed his studies at the University of Chicago and at Harvard University. From 1942 to 1944 he taught meteorology at the University of Chicago; he also became a researcher there with the Cowles Commission. Hurwicz served as a consultant to the U.S. Army Air Forces (1944–45) and later to the RAND Corporation. He joined (1951) the School of Business at the University of Minnesota as a professor of economics and mathematics and in 1969 was awarded its highest faculty honour, Regents professor (emeritus from 1988).

      Maskin was born on Dec. 12, 1950, in New York City and was educated at Harvard (B.A., 1972; M.A., 1974; Ph.D., 1976). After a year (1976–77) as a research fellow at Jesus College, Cambridge, he served on the economics faculties of the Massachusetts Institute of Technology (1977–84) and Harvard (1985–2000). Maskin was named the Albert O. Hirschman Professor of Social Science at the Institute for Advanced Study, Princeton, N.J., in 2000.

      Myerson was born on March 29, 1951, in Boston and met Maskin while attending Harvard (B.A., M.S., 1973; Ph.D, 1976). From 1976 to 2001 he was on the faculty of Northwestern University, Evanston, Ill., in the Kellogg School's managerial economics and decision sciences department, where much of his Nobel-winning research was carried out. In 2001 he became professor of economics at the University of Chicago, where in 2007 he was made the Glen A. Lloyd Distinguished Service Professor. Myerson was the author of two books, Game Theory: Analysis of Conflict (1991) and Probability Models for Economic Decisions (2005).

Janet H. Clark

Prize for Literature
 The 2007 Nobel Prize for Literature was awarded to Doris Lessing, an author whose literary career of more than 50 years was marked by imaginative resilience and introspection. The Swedish Academy's citation extolled her as “that epicist of the female experience, who with skepticism, fire and visionary power has subjected a divided civilization to scrutiny.” Lessing became the 11th woman to be named a Nobel laureate in literature, and she earned the distinction of becoming the first British woman to be so honoured. Emerging in the post-World War II era as a distinct and prophetic voice within contemporary fiction, Lessing gained an international reputation beginning in the mid-1950s as a writer of vibrant reflection and inventiveness on a broad spectrum of thematic issues, ranging from racial tension and prejudice, left-wing politics, feminism, and sexuality to psychoanalytic theory, mysticism, fantasy, and global terrorism. Known primarily as a novelist and short-story writer, Lessing was also an accomplished dramatist, poet, librettist, and essayist. In addition, she produced two volumes of autobiography, Under My Skin (1994), which received the James Tate Black Memorial Prize, and Walking in the Shade (1997).

      Lessing was born Doris May Tayler to British parents on Oct. 22, 1919, in Kermanshah, Persia (now Bakhtaran, Iran). As a child she immigrated with her family to Southern Rhodesia (now Zimbabwe), where she lived an isolated existence on a farm near the border with Mozambique. Largely self-educated, she attended a convent boarding school and later a school for girls in Salisbury (now Harare), ending her formal education at age 14. Determined to escape the loneliness and confinement of her upbringing, she left home while still a teenager to live on her own in Salisbury, earning her livelihood in various capacities as an office worker and typist. Her short-lived first marriage, which produced two children, ended in divorce, and in 1945 she married Gottfried Lessing, a German émigré to Southern Rhodesia, with whom she had a son, Peter. In 1949, with the failure of her second marriage, she immigrated with Peter to England, and in the following year she made her debut as a novelist with the publication of The Grass Is Singing, which was praised for its vivid depiction of colonial Rhodesian society and as a candid exposé of apartheid. Throughout her career, Lessing was intensely committed to social and political responsibility, and she was a member (1952–56) of the British Communist Party. Openly opposed to the racist policies of the repressive South African government, she was declared a “prohibited alien” in 1956 and in that same year was banned from her former homeland.

      Influenced by 19th-century literary realism, Lessing placed her early fiction in an African setting as a means of self-projection and exploration. Her first collection of short stories, This Was the Old Chief's Country (1951), was followed by Martha Quest, the inaugural novel of a five-volume semiautobiographical sequence that came to be known as the Children of Violence series (1952–69). Lessing further enhanced her reputation with the publication in 1962 of her postmodern novel The Golden Notebook, a complex and disjointed narrative of analytic progression in which a female protagonist endures an intense psychological and emotional struggle to regain a sense of fulfillment and self-worth.

      In the 1970s and '80s, Lessing turned to more-experimental fiction with novels such as Briefing for a Descent into Hell (1971), inspired by the psychoanalytic theory of R.D. Laing; The Summer Before the Dark (1973); and The Memoirs of a Survivor (1974). During this time she also embraced the ideology of Sufism and especially the writings of the Indian-born mystic Idries Shah; the latter altered her worldview as well as her artistic sensibility. From 1979 to 1983 she produced a five-volume science-fiction series under the collective title Canopus in Argos; this was followed by The Diary of a Good Neighbour (1983) and If the Old Could… (1984), both written under the pseudonym Jane Somers. Later fiction included The Good Terrorist (1985), Love, Again (1996), The Sweetest Dream (2001), The Story of General Dann and Mara's Daughter, Griot and the Snow Dog (2005), and The Cleft (2007). Notable works of nonfiction included African Laughter (1992), a bittersweet account of revisiting independent Zimbabwe; A Small Personal Voice (1994); and Time Bites (2004).

Steven R. Serafin

Prize for Chemistry
 The 2007 Nobel Prize for Chemistry was awarded to German chemist Gerhard Ertl, professor emeritus of physical chemistry at the Fritz Haber Institute of the Max Planck Society, Berlin, for work that explained in detail how gas molecules react on solid surfaces. As common as the rusting of iron, surface chemical reactions were important in industrial chemistry (such as in the production of fertilizer from nitrogen) and in everyday use (such as in the oxidation of carbon monoxide in a car's catalytic converter).

      Ertl was born on Oct. 10, 1936, in Bad Cannstadt, Ger. He received an M.A. (1961) in physics at the Technical University of Stuttgart (now Stuttgart University) and a Ph.D. (1965) in physical chemistry at the Technical University of Munich. He was professor and director of the physical chemistry department at the Technical University of Hannover from 1968 to 1973 and at the Ludwig Maximilian University (University of Munich) from 1973 to 1986. During the late 1970s and early 1980s, he was also a visiting professor at several universities in the United States. In 1986 Ertl joined the Fritz Haber Institute, and he served as director of the department of physical chemistry until 2004, when he was named professor emeritus.

      When Ertl started his investigation of surface chemical reactions, little was known about how they took place. Their study was difficult because the presence of air or of small amounts of impurities could interfere with the results. Ertl was able to overcome these limitations by making use of newly developed high-vacuum technology. He then made fundamental contributions to the study of surface chemistry by applying modern analytic techniques, including a variety of spectroscopic techniques such as Auger electron spectroscopy and Fourier-transform infrared spectroscopy. By using multiple techniques to examine a surface and get results that he could reliably interpret, Ertl was able to determine the individual steps by which atoms and molecules of gases interact with a solid surface and the way they then react with each other on the surface. Among the applications of Ertl's work was the development of processes used to create electronic components from semiconductor materials and to make catalytic surfaces for producing renewable fuels such as hydrogen.

      One of the early studies that Ertl made of surface reactions concerned the Haber-Bosch process. In this process nitrogen gas (N2) and hydrogen gas (H2) react in the presence of an iron catalyst to produce ammonia (NH3). Introduced in the early 20th century, the Haber-Bosch process soon became commercially important as a way of using nitrogen gas from the atmosphere to produce synthetic nitrogen fertilizer for crops. Until Ertl's research, beginning in the 1970s, chemists were uncertain how the process worked, however. In particular, they did not know at what point in the process the strong triple bond was broken between the two nitrogen atoms that form a molecule of nitrogen gas. Using several spectroscopic techniques to identify the atoms and molecules on the iron surface, Ertl showed that nitrogen molecules were broken apart into atoms on the catalyst surface once the molecules had been adsorbed (become attached) to it. Hydrogen molecules were also broken apart into atoms on the catalyst surface. One by one, three adsorbed hydrogen atoms then joined with an adsorbed nitrogen atom to form ammonia.

      Among other processes that Ertl examined was one that takes place in a vehicle's catalytic converter to make the vehicle's exhaust less toxic. In the catalytic converter a platinum catalyst helps oxidize carbon monoxide (CO) to carbon dioxide (CO2). (Carbon monoxide in the exhaust is produced through the inefficient burning of gasoline or other fossil fuel in the engine.) The chemical reaction on the platinum surface proved far more complicated to study than the Haber-Bosch process. Unlike the Haber-Bosch process, the overall reaction was affected by how the molecules covered the metal surface, and the reaction could be chaotic and was irreversible. Ertl creatively used a new set of spectroscopic methods in a number of investigations (beginning in the 1980s) to observe and describe the complexities of the catalytic reactions.

      When Ertl received the call from Stockholm that he had won the Nobel Prize it was, coincidentally, his 71st birthday. He told reporters that the prize was “the best birthday present that you can give to somebody.”

Sarah Webb

Prize for Physics
      The 2007 Nobel Prize for Physics was awarded to French physicist Albert Fert and Czech-born German physicist Peter Grünberg. The two scientists led research groups that independently discovered the phenomenon known as giant magnetoresistance (GMR), in which weak changes in a magnetic field strongly affect electrical resistance. The discovery quickly revolutionized the technology of magnetic storage in devices such as computer hard-disk drives, and it opened the door to a new field of solid-state science.

      Fert was born on March 7, 1938, in Carcassonne, France. He received master's degrees (1962) in mathematics and physics from the École Normale Supérieure, Paris, and a doctorate (1970) in physical sciences from the University of Paris-Sud (Orsay, France) for studies on the transport properties of nickel and iron. Fert became an assistant professor at the university in 1964 and a professor of physics in 1976. He led the university's condensed-matter physics laboratory from 1970 until 1995, when he became scientific director of the Joint Physics Unit, a research facility operated at the university in association with the French National Center for Scientific Research (CNRS) and the technology firm Thales (then Thomson-CSF). Fert became a member of the French Academy of Sciences in 2004 and was a recipient of the 2003 Gold Medal of the CNRS among many other awards.

      Peter Andreas Grünberg was born on May 18, 1939, in Plzen, Czech. (now Czech Republic). He studied physics at Johann Wolfgang Goethe University, Frankfurt am Main, Ger., and then at Darmstadt University of Technology, where he received a master's degree (1966) and doctorate (1969). In 1972 he became a research scientist at the Institute of Solid State Research of the Helmoltz Association's Research Centre Jülich (Ger.). Although he officially retired from the institute in 2004, he continued working. Grünberg was the recipient of many awards, including the 2007 Stern Gerlach Medal of the German Physics Society, and in 2003 he became an external scientific member of the Max Planck Society.

      The fact that the resistance of an electrical conductor can be altered by an external magnetic field, a phenomenon called magnetoresistance, was observed in 1857 by English physicist William Thomson (Lord Kelvin), who noted that the electrical resistance of ferromagnetic metals, such as iron, cobalt, and nickel, was affected by the direction of the magnetic field relative to the current. In general, the effect is small, with changes of the order of at most a few percent. Nevertheless, magnetoresistance was important technologically, particularly in iron-nickel sensor units for reading magnetic media such as magnetic disks in early computer hard drives.

      In 1988 the research groups led by Fert and Grünberg independently discovered materials that showed a magnetoresistive effect that was dramatically greater than ordinary magnetoresistance—by as much as an order of magnitude. They detected this giant magnetoresistance (a term coined by Fert) in materials in which a layer of a nonmagnetic metal that was only nanometres thick (just a few layers of atoms) was sandwiched between layers of a ferromagnetic metal. Both research groups studied GMR in materials with an iron-chromium-iron construction. Grünberg's group used a three-layer system, whereas Fert used a multilayer system with up to 60 alternating layers.

      GMR very quickly became the subject of a major international research effort because of its numerous potential applications, and the technology became widely adopted. The increased sensitivity of GMR made possible the construction of much smaller magnetic readout heads in computer hard drives, and as a result the amount of magnetic data that could be stored per unit area of a magnetic disk greatly increased. In addition, GMR found use in such devices as solid-state compasses, nonvolatile magnetic memory, and land-mine detectors. The discovery of GMR also helped lead to a whole new field of science called spintronics, or magnetoelectronics. Spintronics depends on the manipulation of two fundamental properties of the electron—its charge and its spin. Because electron spins are quantized and can take only one of two values, it was possible to envisage spintronic devices of nanometre dimensions in which the spin of an individual electron could be used to store a binary digit. GMR was a fascinating example of a fundamental scientific discovery that very quickly gave rise to new technologies, new commercial products, and new fields of science to explore.

David G.C. Jones

Prize for Physiology or Medicine
   The 2007 Nobel Prize for Physiology or Medicine was awarded to three scientists—two Americans and one Briton—for their development of a technique for introducing modified genes into mice. The technique, which involved introducing a gene that “knocks out” (replaces) a mouse's own version of a targeted gene, became extremely useful in genetic research as a way of finding out what specific genes do. Sharing the prize equally were Mario R. Capecchi, professor of human genetics at the University of Utah School of Medicine; Sir Martin J. Evans, director of the School of Biosciences and professor of mammalian genetics at Cardiff (Wales) University; and Oliver Smithies, professor of pathology and laboratory medicine at the School of Medicine of the University of North Carolina at Chapel Hill.

      Capecchi was born on Oct. 6, 1937, in Verona, Italy. During World War II, when he was only four years old, his mother was arrested and taken to the Dachau concentration camp in Germany. Capecchi had to live on the streets. Soon after the war, he and his mother were reunited and moved to the United States. Capecchi received a Ph.D. (1967) in biophysics from Harvard University. He taught at Harvard Medical School from 1969 to 1973, when he joined the faculty at the University of Utah as a professor of biology. In 1982 he also joined the faculty of the university's School of Medicine. Capecchi was appointed as an investigator at the Howard Hughes Medical Institute, based in Maryland, in 1988, and he was elected to the U.S. National Academy of Sciences in 1991.

      Evans was born on Jan. 1, 1941, in Stroud, Gloucestershire, Eng. He received an M.A. (1966) in biochemistry from Christ's College, Cambridge, and a Ph.D. (1969) in anatomy and developmental biology from University College, London. Evans taught at University College until 1978, when he joined the genetics research faculty at Cambridge. In 1999 Evans became a professor of molecular genetics at Cardiff University, where he also directed the School of Biosciences. Evans was made a fellow of the Royal Society in 1993 and was knighted in 2004.

      Smithies was born on June 23, 1925, in Halifax, Yorkshire, Eng. He earned an M.A. and a Ph.D. (both 1951) in biochemistry from Balliol College, Oxford. He moved to the United States in 1960 and joined the genetics faculty at the University of Wisconsin. After he became a naturalized U.S. citizen, he joined the faculty at the University of North Carolina's School of Medicine in 1988, where he held an appointment in pathology and laboratory medicine. Smithies was elected to the U.S. National Academy of Sciences in 1971.

      Working independently to find a way to modify genes in mammals, Capecchi and Smithies sought to manipulate a natural mechanism, called homologous recombination, in which genes are exchanged between paired chromosomes during the division of sex cells (meiosis). Capecchi showed that DNA that was introduced into the reproductive cell of a mammal could recombine with native chromosomes in the cell, and Smithies demonstrated that any gene could potentially be targeted with such recombination. Their early efforts were limited to working with cultured cells. Evans, meanwhile, worked with mouse embryos to isolate and study embryonic stem cells—undifferentiated cells of an embryo that have the potential to develop into any cell type. The three scientists later collaborated to use their findings to develop gene targeting. In this technique a gene is introduced into embryonic stem cells in culture and undergoes recombination. The genetically modified cells are inserted into mouse embryos, which develop into chimeric mice—that is, mice that are composed partly of their own cells and partly of cells derived from the introduced modified stem cells. The mice are then crossbred to produce a line of mice whose genetic makeup corresponds to that of the introduced stem cells.

      Initially skeptical about the feasibility of developing the technique, the scientific community quickly embraced gene targeting once the first results were published in the late 1980s. Gene targeting and knockout mice revolutionized biomedical research, with applications that eventually appeared in almost every area of biomedicine, from research to clinical therapy. It allowed scientists to understand the roles of genes in organ development and was applied to the development of mouse models for human diseases such as cystic fibrosis and thalassemia. The combined work of the trio was previously honoured with the 2001 Albert Lasker Award for Basic Medical Research.

Linda Berris

▪ 2007


Prize for Peace
 The 2006 Nobel Prize for Peace was shared by the Bangladeshi economist Muhammad Yunus and Grameen (Rural, or Village) Bank, which he had founded to administer a program of small loans (microloans) as a way of relieving poverty among the people of his country. Once again the prize recognized not a political leader or diplomat but rather contributions made to peace through efforts to solve social problems. In announcing the award in Oslo on October 13, the Norwegian Nobel Committee said that it was honouring Yunus and the bank “for their efforts to create economic and social development from below,” which “serves to advance democracy and human rights.” Yunus was the first resident of Bangladesh to be awarded a Nobel Prize, and it was significant that the committee had chosen a Muslim and a secular institution as recipients. As Geir Lundestad, director of the Nobel Institute remarked, “Here we see a Muslim influencing the rest of the world.”

      Yunus was born on June 28, 1940, in Chittagong, in what was then East Bengal, a state of British India. He was educated at the University of Dhaka and in 1965 won a Fulbright scholarship, which he used for study at Vanderbilt University in Nashville. He received a Ph.D. (1969) in economics from Vanderbilt and then taught at Middle Tennessee State University. In 1972 he returned to Bangladesh, where he taught at the University of Chittagong. Soon, however, his interest turned from teaching what he called the “elegant theories of economics” to considering ways in which the rural poverty of Bangladesh might be alleviated. In 1976 he made the first of what came to be called microloans, a small amount of money that allowed a self-employed person to buy something that would produce income or to pay off debt owed to a moneylender. The program expanded, and in 1983 Yunus founded Grameen Bank and became its managing director. By September 2006 the bank had loaned a total of $5.77 billion to 6.67 million borrowers living in 72,096 villages. Some 97% of the borrowers were women, and the average amount of a loan was $130. No collateral was required, and loans were repaid in small installments, with a repayment rate that was claimed to be 99%. The bank later expanded to include other types of financial transactions and developed programs in such areas as insurance and housing. The Grameen model was copied worldwide, even in the poor sections of some large U.S. cities, and by 2006 there were some 3,100 microcredit plans in 130 countries.

      The interests of Yunus were wide-ranging. In the 1970s he developed systems of village government and cooperative farming that were adopted by the Bangladeshi government, and from 1975 to 1989 he was director of the country's Rural Economic Program. He served on a number of United Nations commissions, including, beginning in 1993, the Advisory Council for Sustainable Economic Development. He also sat on boards worldwide, including those of Credit and Savings for the Poor in Malaysia and the U.S. National Council for Freedom from Hunger. Among numerous awards was the 1994 World Food Prize. In 1987 he won the Independence Day Award, the Bangladeshi government's highest honour, and in 2006 he was the recipient of the Seoul Peace Prize in addition to his Nobel. With Alan Jolis he was the author of Banker to the Poor (1999), an autobiography.

Robert Rauch

Prize for Economics
 The Nobel Memorial Prize in Economic Sciences was awarded in 2006 to American Edmund S. Phelps for his work in the late 1960s on the relationship between inflation and unemployment. Phelps introduced expectations-based microeconomics into the theory of employment determination and price-wage dynamics and challenged the long-held view that there was a stable negative relationship between unemployment and inflation and that economic policy makers could choose between low inflation and low unemployment. The Phillips curve, named after British economist A. William Phillips, was devised by Phillips in the late 1950s as a graphic representation of the economic relationship between the role of unemployment (or the rate of change of unemployment) and the rate of change of money wages—i.e., that wages tend to rise faster when unemployment is low. Phelps, however, showed that changes in money wages reflected not only the level of unemployment but also the expectations of people and firms about how quickly wages and prices would increase.

      Phelps's research into the perceived stable negative relationship between inflation and unemployment was prompted by his skepticism of the purely statistical nature of the Phillips curve, which did not take into account theories about the behaviour of individual firms and households or make any assumptions about what unemployment rate would be compatible with equilibrium in the labour market. Phelps was also concerned that Keynsian economics had not explained why involuntary unemployment occurred during periods of economic buoyancy and why a fall in consumption led to a rise in unemployment rather than a decline in wages and prices sufficient to prevent job losses. The theory behind the Phillips curve was given some credence in the post-World War II years, when many advanced countries experienced drops in unemployment and rising rates of inflation. This influenced politicians in the 1950s and early 1960s who believed that they could select the desired levels of unemployment and inflation rates from the curve. Fiscal and monetary policies were used in an effort to correct any deviations from the curve. Despite its shortcomings, the Phillips curve appeared successful until the mid-1960s, when the stable trade-off between unemployment and inflation began to break down. Rampant inflation in the wake of the 1973 OPEC oil crisis was partly caused by the failure of policy makers to recognize that the equilibrium rate of unemployment had risen as productivity growth fell. They responded by easing fiscal and monetary policies to reduce unemployment and thereby caused higher inflation.

      In the late 1960s Phelps developed the idea that the rate of inflation depended not only on the level of unemployment but also on how quickly people and companies expected prices to rise. The workforce would demand wage increases to compensate for this anticipated rise, and the companies would raise prices to cover the costs, making expectations of inflation a self-fulfilling prophecy. He formulated the first model of what became known as the “expectations-augmented Phillips curve.” Phelps went on to develop the first model of the determinant of equilibrium unemployment in which firms set wages to affect the number of employees. The regulatory environment, the state of the labour market, the efficiency of markets, and capital formation in the economy would determine the equilibrium rate. Below the equilibrium rate, inflation expectations would go up, and it might be best for a firm to set high wages to keep and attract better-qualified employees.

      Phelps was born in Evanston, Ill., on July 26, 1933. He was educated at Amherst (Mass.) College (B.A., 1955) and at Yale University (Ph.D., 1959). He remained at Yale as an assistant instructor in economics (1958–59) and then (1963–66) as an associate professor and a staff member doing economic research at the Cowles Foundation. He served as professor of economics at the University of Pennsylvania (1966–71) and at New York University (1978–79). In 1971 he joined the faculty at Columbia University, New York City, where he was named McVickar Professor of Political Economy in 1982. Phelps was elected (1982) to the U.S. National Academy of Sciences and in 2000 was made a distinguished fellow of the American Economic Association. He was a charter member (1990–93) of the Economic Advisory Board of the European Bank for Reconstruction and Development. He also held prestigious advisory positions in France, Italy, and China. Phelps was a prolific author of many academic papers, articles, and books, notably Inflation Policy and Unemployment Theory (1972), in which he expounded on the theories that he developed in the late 1960s.

Janet H. Clark

Prize for Literature
      The 2006 Nobel Prize for Literature was awarded to Turkish novelist Orhan Pamuk, whose fiction merged the past with the present and served to bridge the cultural and historical divide within his country between Islamic traditionalism and Western modernity. The most prominent author in contemporary Turkish literature—his work had been translated into more than 40 languages—Pamuk was both a provocative literary figure and a divisive political voice at once admired for his commitment to freedom of expression and berated for public accusations deemed by law as insulting to “Turkishness.” Inciting nationalistic sentiment by openly denouncing atrocities committed against the Armenian populace during World War I and the more recent campaign against the ethnic Kurdish population, Pamuk faced criminal charges in 2005 for his outspokenness before the case was dropped, owing largely to protests from the international literary community and pressure from the membership of the European Union.

      Pamuk was born on June 7, 1952, in Istanbul, to a secular middle-class family. He was educated at the American-sponsored Robert College in Istanbul and studied architecture for three years at Istanbul Technical University before earning a degree (1977) in journalism from the University of Istanbul. He initiated his literary career with the publication in 1982 of Cevdet Bey ve oğulları (“Cevdet Bey and His Sons”); the novel spanned three generations of a prosperous Istanbul family and explored the parameters of expectation and fulfillment. It was followed the next year by Sessiz ev (“The Silent House”), a modernist work that generated comparison to the novels of William Faulkner and Virginia Woolf. Pamuk gained widespread recognition both in Europe and abroad with the publication in 1985 of Beyaz kale (The White Castle, 1990), the first of his works to be translated into English. The Kafkaesque novel, set in 17th-century Istanbul, incorporated narrative and thematic complexities of personality and identity influenced by such diverse writers as Marcel Proust, James Joyce, Italo Calvino, and Jorge Luis Borges. Acknowledged as the leading exponent of Turkish postmodernism, Pamuk established a critical reputation for contrasting the real with the imaginary while creating multilayered and seductive fiction of compelling intimacy and sophistication.

      Between 1985 and 1988 Pamuk resided in the United States, where he attended the University of Iowa's International Writing Program and was a visiting scholar at Columbia University, New York City. After his return to Turkey, he published the controversial Kara kitap (1990; The Black Book, 1994), one of the most innovative works of Turkish fiction, which he adapted in 1991 as a screenplay entitled Gizli yüz (“The Secret Face”), directed by Turkish filmmaker Omer Kavur. Pamuk's next novel, Yeni hayat (1994; The New Life, 1997), an allegorical journey toward self-discovery mired in the web of ambiguity and ambivalence, was followed by the publication in 1998 of Benim adım kırmızı (My Name Is Red, 2001), which in 2003 received the International IMPAC Dublin Literary Award. Set in 16th-century Istanbul during the reign of the Ottoman Sultan Murat III, the best-selling novel further enhanced Pamuk's literary status and popularity as a writer. His novel Kar (2002; Snow, 2004) was awarded the 2005 Prix Médicis Étranger in France and represented an artistic departure for Pamuk. It was removed from the landscape of Istanbul and focused on a middle-aged poet who returns from exile in Frankfurt to confront the cultural and religious realities that continue to plague present-day Turkish society. Accessible to Western readers primarily as a novelist, Pamuk gained increasing notice at home with the publication of Öteki renkler (1999; “Other Colours”), a collection of essays, and İstanbul: hatıralar ve șehir (2003; Istanbul: Memories of a City, 2005; U.S. title, Istanbul: Memories and the City, 2005), an essayistic memoir as well as a portrait of the Istanbul of his childhood and his coming-of-age as a young man intent on becoming a writer.

      Belonging both to Europe and to Asia and reflecting the inherent dichotomy between East and West, the city of Istanbul with its teeming humanity and “interlacing of cultures” remained the dominant inspiration for Pamuk's creative vision as a storyteller. His relationship with Istanbul, as cited by the Swedish Academy, was intertwined with his quest as an author to discover “the melancholic soul of his native city” as a means to affirm the essence of his existence. “My imagination,” he wrote, “requires that I stay in the same city, on the same street, in the same house, gazing at the same view. Istanbul's fate is my fate. I am attached to this city because it has made me who I am.”

Steven R. Serafin

Prize for Chemistry
 The 2006 Nobel Prize for Chemistry was awarded to American biochemist Roger D. Kornberg, professor of structural biology at the Stanford University School of Medicine, for work that explained how—at a molecular level—living cells copy, or transcribe, the genetic information encoded in DNA to make molecules of RNA that direct the production of proteins in the cells. This process is essential for maintaining the vast chemistry of cellular functions. Transcription is important in the formation of different cell types from nonspecialized cells called stem cells, and problems with transcription play a role in such diseases as cancer and heart disease.

      Kornberg was born in St. Louis, Mo., on April 24, 1947. He earned a B.S. (1967) in chemistry from Harvard University and a Ph.D. (1972) in chemistry from Stanford University. He worked as a researcher at the Medical Research Council Laboratory of Molecular Biology at the University of Cambridge and then as an assistant professor at Harvard Medical School before he joined the faculty at Stanford's School of Medicine in 1978. Other members of Kornberg's family were also biochemists, including his father, Arthur Kornberg, who was awarded a share of the 1959 Nobel Prize for Physiology or Medicine for research into how DNA molecules are produced in cells. (The younger Kornberg was the seventh Nobel laureate who was the child of a Nobel Prize winner.)

      Kornberg's work centred on understanding the details of the transcription process in eukaryotic cells—that is, cells that contain a well-defined nucleus. Such cells make up certain single-celled organisms such as yeast and complex multicellular organisms, such as plants and humans. The nucleus of a eukaryotic cell contains DNA, which holds the genetic information of an organism and serves as a blueprint for all the activities of a cell. The DNA never leaves the nucleus. Instead, its genetic information is transcribed into a similar type of molecule—RNA. The RNA (specifically messenger RNA, or mRNA) carries the information from the nucleus to the parts of the cell where proteins are created to carry out the work of the cell. All cells in a multicellular organism contain the same DNA, but different types of tissues, such as bone, blood, or skin, are formed by different types of cells. The regulation of the transcription process selects only those genes that have to be copied to produce the specific proteins used in different types of cells.

      Kornberg used baker's yeast, Saccharomyces cerevisiae, as a model organism with which to work out the puzzles of genetic transcription in eukaryotic cells. Earlier researchers had determined that transcription is performed by an enzyme (a complex protein) called RNA polymerase II and that a number of other proteins are vital to such functions as controlling where the process starts and stops along the DNA molecule and ensuring that a correct copy is made. Kornberg and his colleagues spent many years figuring out which proteins were involved and the intricate way in which they worked together. Their research identified a complex of proteins that regulate the activity of RNA polymerase II, and later research determined in great detail the highly complex structure of the enzyme itself.

      An important part of Kornberg's work depended on X-ray crystallography, a technique in which intense X-rays are directed through crystalline material to determine its structure. A breakthrough came in 2001 with his publication of a series of computer-generated X-ray-crystallography images of the transcription process. To get the images, Kornberg had to understand the process in detail so that he could leave out ingredients that would cause the RNA polymerase II enzyme to stop transcribing at a specific step. By freezing the action in this way, he was able to capture images of successive steps of the process. The images showed the two strands that form the double helix of DNA partially unwound from each other, with part of the enzyme sandwiched between them. As the enzyme moved along the DNA molecule, a new molecule of mRNA grew from a channel within a part of the enzyme molecule next to one of the DNA strands. The series of snapshots of the working enzyme revealed how all the pieces fit together.

      (The 2006 Nobel Prize for Physiology or Medicine was also awarded for research that involved RNA. See Prize for Physiology or Medicine.)

Sarah Webb

Prize for Physics
  The 2006 Nobel Prize for Physics was awarded to two American scientists for discoveries concerning cosmic microwave background radiation, a remnant of an early stage of the development of the universe. The discoveries, which were based on results provided by the Cosmic Background Explorer (COBE) satellite launched in 1989, provided strong evidence for the big-bang theory of the origin of the universe. Sharing the prize equally were John C. Mather, senior astrophysicist at the NASA Goddard Space Flight Center (GSFC) in Greenbelt, Md., and George F. Smoot, an astrophysicist at the University of California, Berkeley. Mather and Smoot were lead investigators for separate experiments aboard COBE, and Mather coordinated the overall project, which eventually involved the work of more than 1,000 persons.

      Mather was born on Aug. 7, 1946, in Roanoke, Va. He received a B.A. (1968) in physics from Swarthmore (Pa.) College and a Ph.D. (1974) in physics from the University of California, Berkeley. While at the Goddard Institute for Space Studies (New York City) from 1974 to 1976, he worked on proposals for the development of the COBE satellite, and when he joined GSFC in 1976, he continued his involvement with the program.

      George Fitzgerald Smoot III was born on Feb. 20, 1945, in Yukon, Fla. He earned B.S. degrees (1966) in mathematics and physics and a Ph.D. (1970) in particle physics from the Massachusetts Institute of Technology. In 1970 Smoot joined the Lawrence Berkeley Laboratory at the University of California. Through the 1970s he ran experiments that were carried aloft on balloons and high-flying aircraft to measure the cosmic background radiation, and by the late 1970s he had begun working with NASA on the development of a similar satellite-based experiment.

      The fact that the galaxies beyond the Milky Way Galaxy are receding from each other and the universe is expanding was recognized by astronomers in the late 1920s. The implication that the universe therefore had a beginning point was first considered quantitatively in the 1940s by the American physicist George Gamow. He calculated that such an event would have been a primordial hot “big bang” with a fireball of short-wavelength radiation (X-rays and gamma rays). This radiation would still permeate the universe, but as a consequence of the expansion of the universe, it would be greatly attenuated and of much longer wavelengths. His calculations suggested that the radiation's energy spectrum (the distribution of energies of various wavelengths) would now be equivalent to that produced by a blackbody (an idealized object that reflects no energy) with a temperature of about 50 K (50 Celsius degrees above absolute zero). This theory was not given serious consideration until American scientists Arno Penzias and Robert Wilson observed a background of microwave radiation from all directions in the sky during experiments with sensitive radio receivers in the mid-1960s. Penzias and Wilson, who received the 1978 Nobel Prize for Physics for their discovery, determined that the blackbody temperature of the radiation was about 3 K.

      By the 1980s the big-bang theory had become well established. It suggested that the microwave background radiation would have come into being as the universe cooled and radiation was decoupled from matter about 300,000 years after the birth of the universe. Two questions, however, were of major importance. First, was the energy spectrum of the radiation identical to that emitted by a blackbody? Second, and perhaps more important, was the distribution of the background radiation uniform? The best observations available appeared to show no irregularities, which made it difficult to explain how matter was eventually able to aggregate, or clump together.

      The highly precise measurements needed to answer these questions could be tackled only by satellite-based instruments, which would be able to detect radiation that would otherwise be absorbed by the Earth's atmosphere. Experiments on the COBE satellite carried out by Mather's group confirmed that the background radiation spectrum agreed very precisely with that expected from a blackbody source with a temperature of 2.725 K. Experiments devised by Smoot's team were able to detect minute intensity variations on the order of one part in 100,000. These variations were consistent with spatial fluctuations that could have led to the clumping of matter in the universe and to the eventual formation of galaxies and stars. Taken together, the two sets of experiments constituted a very strong confirmation of the theory that the universe was born in a hot big bang about 14 billion years ago, and they helped turn cosmology into a precise science.

David G.C. Jones

Prize for Physiology or Medicine
 The 2006 Nobel Prize for Physiology or Medicine was awarded to two American biologists for their discovery of a fundamental mechanism for controlling the flow of genetic information in cells. The mechanism, known as RNA interference (RNAi), causes the genetic instructions from specific genes to be “silenced,” or turned off, in response to a type of RNA called double-stranded RNA (dsRNA). RNAi plays a key role in gene regulation and other cellular processes and is an important tool in genetic and biomedical research. Sharing the prize equally were Andrew Z. Fire, professor of pathology and genetics at the Stanford University School of Medicine, and Craig C. Mello, a professor in the Program in Molecular Medicine at the University of Massachusetts Medical School (UMMS).

      Fire was born on April 27, 1959, in Santa Clara county, Calif. He received an A.B. (1978) in mathematics from the University of California, Berkeley, and a Ph.D. (1983) in biology from the Massachusetts Institute of Technology. Fire then worked as a postdoctoral fellow at the Medical Research Council Laboratory of Molecular Biology at the University of Cambridge. In 1986 he was appointed staff associate at the Carnegie Institution of Washington's Department of Embryology, Baltimore, Md., and in 1989 he was promoted to staff member. Fire joined the faculty of the Stanford University School of Medicine in 2003.

      Mello was born on Oct. 18, 1960, in New Haven, Conn. He received a B.S. (1982) in biochemistry from Brown University, Providence, R.I., and a Ph.D. (1990) in cellular and developmental biology from Harvard University. He worked as a postdoctoral fellow at the Fred Hutchinson Cancer Research Center, Seattle, before he joined the faculty of UMMS in 1994.

      Fire and Mello collaborated on molecular genetic research using a minute roundworm, Caenorhabditis elegans, which is easily cultured and readily accepts foreign genetic material. Like all multicellular organisms, C. elegans is made up of eukaryotic cells—that is, cells that contain DNA in a well-defined nucleus. Genetic information is transcribed, or copied, from the DNA molecules to form single-stranded molecules called messenger RNA (mRNA). These molecules then travel to other parts of the cell, where they direct the production of proteins used by the cell.

      In the course of studying the function of specific genes in C. elegans, Fire and Mello sought to block the activity of the gene unc-22, the genetic code for an abundant muscle protein. Using a technique that had been shown to reduce the activity of genes, Fire and Mello injected C. elegans with purified single strands of the antisense, or complementary, form of unc-22 mRNA, but they observed only a modest effect. They also tried dsRNA that was a combination of unc-22 mRNA with its antisense form and found to their surprise a very strong effect. The worms exhibited twitching that was characteristic of C. elegans worms that lacked a functioning unc-22 gene.

      The dsRNA was at least 100-fold more effective than single-stranded RNA at reducing gene expression, and it was able to cross cellular boundaries to muscle cells throughout the body. Most surprising of all, the effect was also evident in the offspring of the injected worms. As they refined their technique, the investigators found that only a few molecules of dsRNA that contained nucleotide sequences identical or nearly identical to a portion of the target gene were needed to interfere with its expression.

      The results of the RNAi experiments were published in 1998, and RNAi soon became a genetic research tool used by scientists around the world. Subsequent research showed that RNAi silenced genes by destroying their mRNA and that RNAi occurred as a natural process in many organisms, including humans. In some organisms RNAi protects cells from invading viruses whose genetic code contains dsRNA; the mechanism also represses so-called jumping genes—genetic material that moves around on chromosomes with potentially harmful consequences to the cell.

      The potential application of RNAi in medicine was quickly recognized, since the ability to silence disease-causing genes would be useful in treating or preventing a range of human diseases, including virtually all cancers. In 2006 many RNAi-based cancer drugs were in the early stages of development, but researchers had yet to overcome several obstacles to the efficient delivery of stable dsRNA to tumour sites. The area in which the most notable progress had been made was RNAi-based therapies for age-related macular degeneration, a chronic eye disease that leads to severe vision loss.

      (The 2006 Nobel Prize for Chemistry was also awarded for research that involved RNA. See Prize for Chemistry.)

Ellen Bernstein

▪ 2006


Prize for Peace
      The 2005 Nobel Prize for Peace was shared by the International Atomic Energy Agency (IAEA) and its director general, Mohamed ElBaradei. The announcement, made on October 7, noted, “At a time when the threat of nuclear arms is again increasing, the Norwegian Nobel Committee wishes to underline that this threat must be met through the broadest possible international cooperation. This principle finds its clearest expression today in the work of the IAEA and its director general.” The award was made 60 years after the dropping of atomic bombs on Hiroshima and Nagasaki, Japan, by the U.S. during World War II, the fourth time a major anniversary of the bombings had been marked with the peace prize. It was the 12th prize for the United Nations or an affiliated agency.

      The IAEA, an intergovernmental organization headquartered in Vienna and linked to the UN, was established in 1957. It grew out of recommendations made by U.S. Pres. Dwight D. Eisenhower in a 1953 speech, “Atoms for Peace,” before the UN. The agency promoted peaceful applications of atomic energy and also worked to prevent its use for military purposes. It gradually came to take an active role in attempts to prevent nuclear proliferation, with efforts first centred on Iraq and The Sudan, in which cases the agency claimed success, and later on North Korea and Iran. The committee remarked, “At a time when disarmament efforts appear deadlocked, when there is a danger that nuclear arms will spread both to states and to terrorist groups, and when nuclear power again appears to be playing an increasingly significant role, IAEA's work is of incalculable importance.”

      Mohamed ElBaradei was born in Cairo on June 17, 1942. His father, a lawyer, was president of the Egyptian Bar Association. The son received a bachelor's degree in law from the University of Cairo in 1962 and a doctorate in international law from New York University in 1974. During the 1960s he was a member of the Egyptian diplomatic corps, twice serving on missions to the UN in New York City and in Geneva. From 1974 to 1978 ElBaradei was assistant to Egypt's foreign minister. In 1981 he became a senior fellow in charge of the International Law Program at the UN Institute for Training and Research, and he was an adjunct professor in international law (1981–87) at New York University. ElBaradei became a member of the IAEA secretariat in 1984, working as counsel and, beginning in 1993, as assistant director general for external relations. Appointed director general of the agency in 1997, he was reappointed to a second term in 2001 and, despite opposition from the U.S., to a third term in 2005.

      Although ElBaradei sometimes took a tough stance toward uncooperative governments, he was also known as an advocate of patient diplomacy. In 2002 he challenged U.S. claims, correctly as it turned out, that Iraqi Pres. Saddam Hussein had restarted a nuclear program, and he resisted U.S. efforts to impose sanctions on Iran. In response to the announcement that he had been given the award, he said, “The prize recognizes the role of multilateralism in resolving all of the challenges we are facing today. It will strengthen my resolve and that of my colleagues to continue to speak truth to power.”

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2005 to Robert J. Aumann of Israel and American Thomas C. Schelling for their respective contributions to the greater “understanding of conflict and cooperation through game-theory analysis.” The results of their separate work on game theory—or interactive decision theory—facilitated the development of noncooperative game theory to explain why some groups and countries are able to cooperate while others are in conflict. This widened the theory's application throughout the social sciences.

      Aumann employed a mathematical approach to show that long-term social interaction could be analyzed by using formal noncooperative game theory. Through his methodologies and analyses of so-called infinitely repeated games, he identified the outcomes that could be sustained in long-term relations and demonstrated the prerequisites for cooperation in situations where there are many participants, infrequent interaction, or the potential for a break off in relations and when participants' actions lack transparency. Aumann also extended game theory with his investigation into its cognitive foundations. He showed that peaceful cooperation is attainable in a repeated game even when the short-term interests of the parties are in conflict. Aumann's repeated game theory was applied in analyses ranging from business cartels and farming cooperatives to international territorial disputes.

      Schelling extended the use of game theory to assist in the resolution of conflict and avoidance of wars. In the mid-1950s the Cold War between the U.S. and the Soviet Union prompted him to apply game-theory methods to global security and the arms race. He published his results in The Strategy of Conflict (1960), which became a classic. In seeking to ascertain how nuclear powers might successfully deter each other, Schelling focused on ways in which the negotiating power of the parties could be affected by such factors as the initial alternatives available to them and their ability to influence the employable alternatives in the negotiating process. He concluded that uncertain retaliation is more credible and efficient than certain retaliation and argued that a country's best defense against nuclear war is the protection of its weapons rather than its people because a government needs to demonstrate the ability to respond to a nuclear attack. In contrast to Aumann, Schelling's strength lay in his ability to generate new ideas and concepts without emphasizing the underlying mathematical techniques.

      Aumann was born on June 8, 1930, in Frankfurt am Main, Ger., and immigrated to the U.S. with his family in 1938. He was educated at the City College of New York (B.S., 1950) and the Massachusetts Institute of Technology (Ph.D., 1955), followed by postdoctoral work at Princeton University. In 1956 he moved to Israel, where he served on the mathematics faculty at Hebrew University, Jerusalem, as an instructor (1956–58), lecturer (1958–64), associate professor (1964–68), professor (1968–2001), and professor emeritus (from 2001). He also held visiting professorships at various American universities. Aumann was on the editorial and advisory boards of several academic journals, notably International Journal of Game Theory (from 1971), Journal of Mathematical Economics (from 1974), and Games and Economic Behaviour (from 1989). He received the Israel Prize in Economics in 1994. Aumann was the author of six books and nearly 100 scientific papers, including What Is Game Theory Trying to Accomplish? (1985).

      Schelling was born on April 14, 1921, in Oakland, Calif., and studied economics at the University of California, Berkeley (B.A., 1944), and Harvard University (Ph.D., 1951). He began his career working for the U.S. Bureau of the Budget (1945–46), the Marshall Plan in Europe (1948–50), and the Executive Office of the President (1951–53). He then taught economics at Yale University (1953–58), Harvard (1958–90), where he was named Lucius N. Littauer Professor of Political Economy at the John F. Kennedy School of Government in 1969, and the University of Maryland (1990–2003). He was a fellow of the American Academy of Arts and Sciences and the American Economic Association (president, 1991). In addition to his work on military strategy and arms control, Schelling wrote on such varied topics as energy and environmental policy, terrorism, racial integration, and health policy. His books included Micromotives and Macrobehavior (1978) and Choice and Consequence (1984).

Janet H. Clark

Prize for Literature
      British playwright Harold Pinter was awarded the 2005 Nobel Prize for Literature for work of insight and originality that “uncovers the precipice under everyday prattle and forces entry into oppression's closed rooms.” The author of more than 30 plays, Pinter was also an accomplished actor, director, poet, and writer for radio, television, and film. In addition, he was an outspoken and often controversial activist in defense of human rights. He had emerged as part of the “new wave” of postwar dramatists responsible for the renaissance of British theatre in the late 1950s and '60s, but he developed independently from his contemporaries and represented a distinct and provocative voice in contemporary theatre. As a playwright Pinter used the stage as a means to explore the anguish of the human condition through a personal mode of language and situation that came to be commonly regarded as “Pinteresque.”

      Pinter was born on Oct. 10, 1930, in Hackney, a working-class section in the East End of London. He was the son of a Jewish tailor and early in childhood experienced the social and cultural ramifications of anti-Semitism. At the outbreak of World War II, he left London and lived from 1939 to 1942 in Cornwall. Pinter returned to London when he was 12 years old, and he left school at age 16. He decided to pursue an acting career and received a grant in 1948 to study in London at the Royal Academy of Dramatic Art; he later continued his studies at the Central School of Speech and Drama. In 1951 Pinter began acting with regional and provincial touring companies, performing in the 1950s under the stage name David Baron. Pinter published his first poems in the early 1950s and debuted as a dramatist with his one-act play The Room, performed in 1957 at the University of Bristol's Drama Studio. The play introduced the thematic elements and emotional intensity that defined Pinter's methodology and artistic sensibility, juxtaposing the known with the unknown and the mundane with the inexplicable. Within the parameters of their confined space, his characters vie with each other for position and control, searching for relevance and identity in an atmosphere pervaded by uncertainty, ambiguity, and ambivalence.

      Audiences were generally unprepared for Pinter's form of drama, and critical reaction to his early so-called comedies of menace ranged from consternation and confusion to disregard and rejection. His first full-length play, The Birthday Party, opened in Cambridge in 1958 and then transferred to the West End in London. Though the play was almost uniformly panned by reviewers (it closed after one week), it was later recognized as one of Pinter's most celebrated and enduring accomplishments as a dramatist. His second full-length play and first commercial success was The Caretaker (1960; filmed 1963 [released in the U.S. as The Guest]), for which he received the Evening Standard Award for best play.

      Following The Homecoming (1965; filmed 1973), often cited as his most compelling work for the stage, Pinter entered a period of experimentation with plays such as Landscape and Silence (produced jointly in 1969), Old Times (1971), Monologue (1973), and Betrayal (1978; filmed 1983). After the overthrow (1973) of Chile's Pres. Salvador Allende, Pinter became increasingly politicized as a writer. Later plays with social and political implications included One for the Road (1984), Mountain Language (1988), The New World Order (1991), Moonlight (1993), Ashes to Ashes (1996), and Celebration (2000). He became a vocal critic of British Prime Minister Margaret Thatcher's policies and campaigned against a broad range of issues: the persecution and imprisonment of dissident writers, Israeli treatment of the Palestinians, Turkish treatment of the Kurds, and the U.S.-led invasion of Iraq.

      Pinter's screenplay for The Servant (1963), adapted from Robin Maughman's novel, earned him Writers' Guild of Great Britain and New York Film Critics Circle awards. His critical reputation was further enhanced by The Pumpkin Eater (1964), which received the BAFTA Award for best screenplay; Accident (1967), which shared the Cannes Film Festival Special Jury Grand Prize; and The Go-Between (1970), which won the Grand Prize at Cannes. Later film adaptations included The Last Tycoon (1976), The French Lieutenant's Woman (1981), Turtle Diary (1985), The Handmaid's Tale (1990), and The Trial (1993).

      Pinter received the Laurence Olivier Award for lifetime achievement in the theatre in 1996. He was made CBE in 1966 and in 2002 was appointed Companion of Honour for services to literature. In 1980 Pinter married his second wife, the novelist and historian Antonia Fraser.

Steven R. Serafin

Prize for Chemistry
  The 2005 Nobel Prize for Chemistry was awarded to three scientists—one French and two American—who developed metathesis, one of the most important types of chemical reactions used in organic chemistry. The Royal Swedish Academy of Sciences gave the $1.3 million award to Yves Chauvin, honorary research director of the French Institute of Petroleum in Rueil-Malmaison, France; Robert H. Grubbs, a professor of chemistry at the California Institute of Technology (Caltech); and Richard R. Schrock, a professor of chemistry at the Massachusetts Institute of Technology (MIT).

      The term metathesis comes from the Greek words meta (“change”) and thesis (“position”). In metathesis, substances called catalysts create and break double carbon bonds of organic molecules in a way that causes different groups of atoms in the molecules to change places with one another. (A catalyst promotes chemical reactions that otherwise would not take place or would occur very slowly.) The shift of groups of atoms from their original position to a new location yields new molecules with new properties. With the development of metathesis, the academy said, “fantastic opportunities have been created for producing many new molecules.” The academy also cited many useful products that had been made through metathesis, including advanced plastics, fuel additives, agents to control harmful plants and insects, and new drugs for medical conditions such as osteoporosis and arthritis.

      Researchers in the chemical industry discovered metathesis in the 1950s. They found that various catalysts could be used to carry out metathesis reactions, although the initial catalysts did not work well. Since the scientists did not understand how the catalysts worked at a molecular level, the hunt for better catalysts was purely a hit-and-miss endeavour or, as the academy put it, “fumbling in the dark.”

      Chauvin, a French chemist, was born on Oct. 10, 1930. He spent most of his career conducting chemical research at the French Institute of Petroleum and was a member of the Academy of Sciences in France. In 1970 he achieved a breakthrough when he described the mechanism by which a metal atom bound to a carbon atom in one group of atoms causes the group to shift places with a group of atoms in another molecule. Although the catalyst starts the chemical reaction in which two new carbon-carbon bonds are formed, it comes away from the chemical reaction unaffected and ready to start the reaction again. Chauvin's work showed how metathesis could take place, but its practical application required the development of new catalysts.

      Schrock, born on Jan. 4, 1945, in Berne, Ind., received a Ph.D. in chemistry from Harvard University in 1971 and joined the faculty of MIT in 1975. He systematically tested catalysts that contained tantalum, tungsten, or other metals in an effort to understand which metals could be used and how they worked. In a major advance in 1990, Schrock and his associates reported the development of a group of efficient metathesis catalysts that used the metal molybdenum. The new catalysts, however, were sensitive to the effects of air and water, which reduced their activity.

      Grubbs was born on Feb. 27, 1942, near Possum Trot, Ky. He received a Ph.D. in chemistry from Columbia University, New York City, in 1968 and joined the faculty of Caltech in 1978. In 1992, while furthering research on metathesis, Grubbs and his associates reported the discovery of a catalyst that contained the metal ruthenium. It was stable in air and worked on the double carbon bonds in a molecule selectively, without disrupting the bonds between other atoms in the molecule. The new catalyst also had the ability to jump-start metathesis reactions in the presence of water, alcohols, and carboxyl acids.

      The academy pointed out that many other researchers had also made important contributions to the field. As scientists sought to develop new metathesis catalysts for specific applications, research in the field continued to be very active. One area of research was the synthesis of compounds found in nature that had potential commercial use in medicine or other fields. Such “natural products” usually had very complex structures and were very difficult to make in the laboratory. “Considering the relatively short time Schrock's and Grubbs's catalysts have been available, it is remarkable to note the breadth of applications they have found,” the academy said.

      The academy also noted that the catalysts for metathesis had played a role in the development of “green chemistry”—the design of chemical processes and products in which the need for and the generation of various hazardous substances was reduced or eliminated. Metathesis catalysts had been used in the development of reactions for synthesizing chemical compounds that were more efficient and required fewer steps, fewer ingredients, and smaller quantities of ingredients. The reactions were simpler because they worked at ordinary temperatures and pressures, and they were more environmentally friendly because they used noninjurious solvents and produced less-hazardous waste products.

Michael Woods

Prize for Physics
      Two Americans and a German won the 2005 Nobel Prize for Physics for their contributions to the field of optics, the branch of physics that deals with the physical properties of light and its interactions with matter. The Royal Swedish Academy of Sciences gave one-half of the $1.3 million prize to Roy J. Glauber, a professor of physics at Harvard University. The other half was shared by John L. Hall, a fellow of JILA (a research institute operated by the National Institute of Standards and Technology [NIST] and the University of Colorado at Boulder), and Theodor W. Hänsch, director of the Max Planck Institute for Quantum Optics and a professor at the Ludwig Maximilians University, Munich.

      Glauber was born in New York City on Sept. 1, 1925. He received a Ph.D. in physics from Harvard University in 1949 and briefly conducted research at the Institute for Advanced Studies in Princeton, N.J., and at the California Institute of Technology before he returned to Harvard in 1952. Glauber was cited by the academy for his development of a theory that advanced the understanding of light by describing the behaviour of light particles (light quanta, or photons). The theory, presented by Glauber in the early 1960s, merged the field of optics with quantum physics (which deals with the behaviour of matter on the atomic and subatomic scales), and it formed the basis for the development of a new field, quantum optics. Glauber's work helped clarify how light had both wavelike and particlelike characteristics and explained the fundamental differences between the light emitted by hot objects, such as electric light bulbs, and the light emitted by lasers. (Hot sources of light emit incoherent light, which consists of many different frequencies and phases, whereas lasers emit coherent light, light with a uniform frequency and phase.) Practical applications of Glauber's work included the development of highly secure codes in the field known as quantum cryptography. His work also had a central role in efforts to develop the new generation of computers, so-called quantum computers, which would be extraordinarily fast and powerful and use quantum-mechanical phenomena to process data as qubits, or quantum bits, of information.

      Hall was born in Denver in 1934. He received a Ph.D. in physics in 1961 from the Carnegie Institute of Technology, Pittsburgh, and joined JILA in the National Bureau of Standards (which later became the NIST) later that year. Hänsch was born Oct. 30, 1941, in Heidelberg, Ger., and he received a Ph.D. in physics from the University of Heidelberg in 1969. In awarding Hall and Hänsch the Nobel Prize, the academy specifically cited their contributions to the development of laser spectroscopy, the use of lasers to determine the frequency (colour) of light emitted by atoms and molecules. A focus of their careers had been to make precise frequency measurements. In the 1980s it led to very precise measurements of the speed of light in a vacuum (299,792,458 m per second), and as a consequence the metre, the fundamental unit of length in the International System of Units, was redefined in terms of the speed of light. Despite such advances, it was very difficult to measure optical frequencies (frequencies of visible light). It required a procedure, called an optical frequency chain, to relate them to the output frequencies of an atomic clock and was so complex that it could be performed in only a few laboratories. The optical frequency comb technique, in which ultrashort pulses of laser light create a set of precisely spaced frequency peaks that resemble the evenly spaced teeth of a hair comb, proved a practical way of obtaining optical frequency measurements to an accuracy of 15 digits, or one part in one quadrillion. Hänsch originated the idea for the technique in the late 1970s, but it took until 2000 for Hänsch, with key contributions by Hall, to work out the details. Their success soon led to the development of commercial devices with which very precise optical frequency measurements could readily be made.

      Practical applications of the work of Hall and Hänsch included the development of very accurate clocks, improved satellite-based navigation systems such as the Global Positioning System, and the synchronization of computer data networks. Their work was also used by physicists to verify Einstein's theory of special relativity to very high levels of precision and to test whether the values of fundamental physical constants related to optical frequencies were indeed constant or changed slightly over time.

Michael Woods

Prize for Physiology or Medicine
      Two Australian scientists who discovered that stomach ulcers are an infectious disease caused by bacteria shared the Nobel Prize for Physiology or Medicine. The Karolinska Institute, which awarded the prize, termed the discovery by Barry J. Marshall and J. Robin Warren “remarkable and unexpected.” Marshall was a senior principal research fellow at the University of Western Australia in Nedlands. Warren was retired from the Royal Perth (Australia) Hospital.

      Before Marshall and Warren discovered the role of the bacterium, Helicobacter pylori, physicians believed that peptic ulcers (sores in the stomach lining) were caused by an excess of gastric acid that was released in the stomach as the result of emotional stress, the ingestion of spicy foods, or other factors. Peptic ulcers cause pain, nausea, and—if they begin to bleed—even more serious problems. The standard treatment had included antacid medicines, hospital bed rest, and a diet in which large amounts of milk and cream were used to soothe the stomach. Some patients underwent surgery to remove parts of the stomach. Although the treatments often gave patients temporary relief, stomach pain and other symptoms often returned and caused life-long problems. “Thanks to the pioneering discovery by Marshall and Warren, peptic ulcer disease is no longer a chronic, frequently disabling condition but a disease that can be cured by a short regimen of antibiotics and acid-secretion inhibitors,” said the citation from the Karolinska Institute.

      Warren was born June 11, 1937, in Adelaide, S.Aus. He received a bachelor's degree from the University of Adelaide in 1961 and worked at several hospitals before he began working in 1968 as a pathologist at Royal Perth Hospital, where he remained until his retirement in 1999. In 1979 he first observed the presence of spiral-shaped bacteria in a biopsy of the stomach lining from a patient. It defied the conventional wisdom that bacteria could not survive in the highly acidic environment of the stomach. Many scientists in Australia and other countries dismissed his reports on the topic as impossible, but his research during the next two years showed that the bacteria were often in stomach tissue and almost always in association with gastritis (an inflammation of the stomach lining).

      Marshall was born Sept. 30, 1951, in Kalgoorlie, W.Aus. He obtained a bachelor's degree from the University of Western Australia in 1974. He worked (1977–84) at Royal Perth Hospital and later taught medicine at the University of Western Australia. While a young staff member in Perth Hospital's gastroenterology department in 1981, Marshall became interested in Warren's research, and the two began working together to pin down the clinical significance of the bacteria. After they developed a way to grow the bacteria in laboratory culture dishes, Warren and Marshall identified the microbe as a new species. They conducted a study of stomach biopsies from 100 patients that systematically showed that the bacteria were present in almost all patients with gastritis, duodenal ulcer, or gastric ulcer. On the basis of the findings, Warren and Marshall proposed that H. pylori was involved in causing those diseases.

      Physicians were skeptical that peptic ulcer disease could be an infectious condition and clung to the traditional treatments for the disease. Marshall and Warren persisted in their research and continued to gather evidence. At one point Marshall chose to become his own guinea pig in what was one of the most notable instances of self-experimentation in the history of medicine. Deciding that the best way to prove their findings was to show exactly what happened when a person was infected with H. pylori, Marshall drank a culture of the bacterium. Within a week he began suffering stomach pain and other symptoms of acute gastritis. Stomach biopsies confirmed that he did have gastritis and showed that the affected areas of his stomach were infected with H. pylori. Marshall then took antibiotics and was cured.

      The research solved the long-standing puzzle of why peptic ulcers often returned after traditional treatment. Bland diets and antacids reduced stomach acidity and allowed inflamed areas of the stomach lining to heal, but the bacteria responsible for the inflammation remained and were able to cause new bouts of inflammation. Studies showed that H. pylori infected the stomachs of at least 50% of the world's population. Although most people never experienced symptoms, 10–15% eventually developed stomach ulcers or gastritis. Infection also put people at higher risk of stomach cancer. Genetic differences were believed to influence who developed peptic ulcer disease. “The discovery that one of the most common diseases of mankind, peptic ulcer disease, has a microbial cause has stimulated the search for microbes as possible causes of other chronic inflammatory diseases,” the Karolinska Institute noted in its citation. Researchers had evidence that bacterial infections might be involved in conditions ranging from arthritis to atherosclerosis, the artery-clogging disease that underlay most heart attacks and many strokes.

Michael Woods

▪ 2005


Prize for Peace
      The 2004 Nobel Prize for Peace was awarded to Wangari Maathai, a Kenyan environmentalist and advocate for women's rights. The first African woman to receive the prize, she was best known as the founder and leader of the Green Belt Movement, which among other things had been responsible for the planting of more than 30 million trees in Kenya and elsewhere in Africa. Maathai and her movement were also involved in a number of other activities, economic and political as well as environmental, and in announcing the prize, the Norwegian Nobel Committee observed, “She has taken a holistic approach to sustainable development that embraces democracy, human rights and women's rights in particular.” Acknowledging that the committee was, in effect, broadening the scope of the prize, its chairman noted that “with this award, we have expanded the term ‘peace' to encompass environmental questions.…Peace on earth depends on our ability to secure our living environment.”

      Wangari Muta Maathai was born on April 1, 1940, in Nyeri, Kenya. She received a bachelor's degree in the biological sciences from Mount St. Scholastica College (now Benedictine College) in Atchison, Kan., in 1964 and a master's degree in biology from the University of Pittsburgh, Pa., in 1966. Returning to Kenya, she then studied at the University of Nairobi, where she received a doctoral degree in veterinary medicine in 1971. She was the first woman in East Africa to earn a doctoral degree, and in 1976 she became chair of the university's department of veterinary anatomy. That same year she joined the National Council of Women of Kenya, and she was chair of the group from 1981 to 1987. In 1977, as a way both of conserving the land and of empowering the women, she established the Green Belt Movement and embarked on the program of recruiting women to plant trees in areas that had been deforested. Over time the movement came to include programs in civic and environmental education, advocacy and networking, the training of workers in other African countries, and the development of life skills for women. It also conducted “safaris,” or exchange visits, as a way of sharing cultures and of participating in activities and projects that furthered conservation.

      An outspoken critic of government corruption and of such policies as land-grabbing, the taking of public lands by officials and their cronies for exploitation, Maathai often ran afoul of the regime of Daniel arap Moi in the 1970s and '80s. She was sometimes physically attacked, and at one point she was jailed. She also became known as an advocate for the cancellation of the debts of poor African nations. With the election of a reform government in 2002, she won a seat in Kenya's parliament and was subsequently appointed assistant minister for the environment, natural resources, and wildlife. Her writings included the book The Green Belt Movement: Sharing the Approach and the Experience (1988).

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2004 to Finn E. Kydland of Norway and American Edward C. Prescott “for their contributions to dynamic macroeconomics: the time consistency of economic policy and the driving forces behind business cycles.” Kydland and Prescott, working separately and together, influenced the monetary and fiscal policies of governments and laid the basis for the increased independence of many central banks, notably those in the U.K., Sweden, and New Zealand.

      Kydland and Prescott were honoured for their joint contributions to two closely connected but distinct areas of macroeconomic research. The first related to the formulation of economic policy to deal with fluctuations in output and employment. From the 1930s until the early 1970s, macroeconomic analysis was dominated by the theories of British economist John Maynard Keynes. Keynesian analysis posits that short-term output and unemployment fluctuations result from variations in total demand and that recessions result from a lack of demand, not least because of consumer and business pessimism. The perceived solution was for economic policy makers to reduce unemployment permanently by allowing high rates of inflation. By the late 1960s the methodology of Keynesian models was being criticized, and by the late 1970s Keynesian analysis was proving inadequate to explain “stagflation”—simultaneous high rates of inflation and unemployment—which occurred in the 1970s in combination with a world slowdown in output and large rises in oil prices that were linked to supply rather than to demand.

      In their seminal article “Rules Rather than Discretion: The Inconsistency of Optimal Plans” (1977), Kydland and Prescott demonstrated how a declared commitment to a low inflation rate by policy makers might create expectations of low inflation and unemployment rates. If this monetary policy is then changed and interest rates are reduced—for example, to take political advantage of the prosperity generated by increased inflation or to give a short-term boost to employment—the policy maker's (and thus the government's) credibility will be lost and conditions worsened by the “discretionary” policy.

      In their joint article “Time to Build and Aggregate Fluctuations” (1982), Kydland and Prescott established the microeconomic foundation for business cycle analyses. Business cycles had previously been thought to be led by variations in aggregate demand. The two economists, however, demonstrated that technology changes or supply shocks, such as oil price hikes, could be reflected in investment and relative price movements and thereby create short-term fluctuations around the long-term economic growth path.

      Kydland was born in December 1943 in Ålgård, near Stavanger, Nor., and was educated at the Norwegian School of Economics and Business Administration (NHH; B.S., 1968) and Carnegie Mellon University, Pittsburgh, Pa. (Ph.D., 1973), where Prescott advised on his doctorate. Kydland was an assistant professor of economics at NHH (1973–78) and taught at Carnegie Mellon (1978–2004) before being named Henley Professor of Economics at the University of California, Santa Barbara, in July 2004. He was also an adjunct professor at NHH and a consultant research associate to the Federal Reserve banks of Dallas, Texas, and Cleveland, Ohio. Kydland's teaching and research interests included business cycles, monetary and fiscal policy, and labour economics. He was a fellow of the Econometric Society from 1992.

      Prescott was born Dec. 26, 1940, in Glens Falls, N.Y. He studied mathematics at Swarthmore (Pa.) College (B.A., 1962), operations research at Case Western Reserve University, Cleveland (M.S., 1963), and economics at Carnegie Mellon (Ph.D., 1967). He was a lecturer (1966–67) and assistant professor (1967–71) of economics at the University of Pennsylvania and then assistant professor (1971–72), associate professor (1972–75), and professor (1975–80) at Carnegie Mellon. After teaching at the University of Minnesota (1980–98 and 1999–2003), he moved to Arizona State University, where he held the W.P. Carey Chair from 2003. From 1980 he was an adviser to the Federal Reserve Bank of Minneapolis, Minn. Prescott was a fellow of the Brookings Institution, the Guggenheim Foundation, the Econometric Society (from 1980), and the American Academy of Arts and Sciences. He was a coeditor of Economic Theory and a former president (1992–95) of the Society of Economic Dynamics and Control. He also held associate editorships with the Journal of Econometrics (1976–82), the International Economic Review (1980–1990), and the Journal of Economic Theory (1990–92). Prescott's extensive writings covered such wide-ranging topics as business cycles, economic development, general equilibrium theory, and finance.

Janet H. Clark

Prize for Literature
 Austrian writer and polemical feminist Elfriede Jelinek was awarded the 2004 Nobel Prize for Literature, the 10th woman to be honoured since the creation of the prize. Known primarily to German-speaking readers, Jelinek gained international notoriety with the French-language film version of her semiautobiographical novel of sexual repression and perversity entitled Die Klavierspielerin (1983; The Piano Teacher, 1988). It was adapted for the screen in 2001 as La Pianiste (The Piano Teacher), directed by Michael Haneke. One of the most provocative and controversial writers of her generation, Jelinek was cited by the Swedish Academy “for her musical flow of voices and counter-voices in novels and plays that with extraordinary linguistic zeal reveal the absurdity of society's clichés and their subjugating power.”

      Jelinek, the only child of a Viennese mother of Romanian-German extraction and a Catholic and a Czechoslovak-Jewish father, was born on Oct. 20, 1946, in Mürzzuschlag, Styria province, Austria. She received her education in Vienna, where her combination of academic studies with a rigorous program of musical training at the Vienna Conservatory contributed in part to her emotional breakdown at the age of 17. It was during her recovery that Jelinek turned to writing as a form of self-expression and introspection. After attending the University of Vienna, she made her literary debut with the publication in 1967 of Lisas Schatten, a collection of poems, and followed that in 1970 with her first published novel, wir sind lockvögel baby!

      Influenced by the tenets of social criticism espoused by precursors such as Karl Kraus, Ödön von Horváth, and Elias Canetti, as well as the avant-garde Vienna Group, which included H.C. Artmann and Konrad Bayer, Jelinek rejected the conventions of traditional literary technique in favour of linguistic and thematic experimentation. Using language and the structural interplay of class consciousness as a means to explore the social and cultural parameters of dependency and authority, Jelinek earned critical recognition with the publication in 1972 of her novel Michael: Ein Jugendbuch für die Infantilgesellschaft and emerged as a significant voice in Postmodern Austrian fiction with the publication of Die Liebhaberinnen (1975; Women as Lovers, 1994), a satiric novel of entrapment and the victimization of women within a dehumanizing and patriarchal society. She further enhanced her reputation with the staging of her first major play, Was geschah, nachdem Nora ihren Mann verlassen hatte oder Stützen der Gesellschaften (1980; What Happened After Nora Left Her Husband; or, Pillars of Society, 1994), written as a sequel to Henrik Ibsen's A Doll's House.

      She was awarded the Georg Büchner Prize in 1998 as well as the Else Lasker-Schüler Prize and the Stig Dagerman Prize, in 2003 and 2004, respectively. Jelinek defined herself as an advocate for the weak and defenseless and remained defiant in her opposition to the exclusion and exploitation of women, as she illustrated in plays such as Clara S.: musikalische Tragödie (1984; Clara S., 1997), Krankheit oder moderne Frauen (1987), Ein Sportstück (1998), and Das Lebewohl (2000), as well as in notable works of fiction that included Die Ausgesperrten (1980; Wonderful, Wonderful Times, 1990), Oh Wildnis, oh Schutz vor ihr (1985), Lust (1989; translated into English in 1992 under the same title), Die Kinder der Toten (1995), and Gier: Ein Unterhaltungsroman (2000).

      Though acclaimed for her depiction of gender relations, female sexuality, and the manipulation of popular culture, she was chastised for elements in her work deemed pornographic and overtly sensational. Jelinek was an outspoken critic of oppression and violence, anti-Semitism, and racism. From 1974 to 1991 she was a member of the Austrian Communist Party, and throughout her career she encoded within her writing an ideological agenda for systemic change. For Jelinek, literature was both confessional and combative, serving as a form of social commentary and political engagement in order to cleanse and to liberate.

Steven R. Serafin

Prize for Chemistry
      Three scientists who discovered an ingenious mechanism by which the cells of most living organisms cull unwanted proteins were awarded the 2004 Nobel Prize for Chemistry. The mechanism involved a process for tagging the unwanted proteins and then destroying them within structures in the cell that function as microscopic garbage disposals. Sharing the prize equally were two Israelis, Aaron J. Ciechanover and Avram Hershko of the Technion–Israel Institute of Technology, Haifa, and an American, Irwin Rose of the University of California, Irvine. Much of their prizewinning research was done in the late 1970s and early 1980s, when the three scientists worked together at the Fox Chase Cancer Center, Philadelphia.

      Ciechanover was born Oct. 1, 1947, in Haifa. He received an M.D. from Hebrew University–Hadassah Medical School, Jerusalem, in 1974, and in 1981 he received a D.Sc. from the Technion, where he was a graduate student of Hershko's. Ciechanover held a variety of academic positions at the Technion beginning in 1977, and in 2002 he became a distinguished research professor. Hershko was born Dec. 31, 1937, in Karcag, Hung., and studied at the Hebrew University–Hadassah Medical School, where he received an M.D. in 1965 and a Ph.D. in 1969. He joined the faculty of the Technion in 1972 and became a distinguished professor in 1998. Rose was born July 16, 1926, in Brooklyn, N.Y., and received a Ph.D. in biochemistry from the University of Chicago in 1952. He served (1954–63) on the faculty at Yale University School of Medicine and was a senior member (1963–95) of the Fox Chase Cancer Center. In 1997 he joined the department of physiology and biophysics at the University of California, Irvine.

      Proteins are very complex molecules built from individual amino acids that are linked together in chains. The typical human cell contains some 100,000 different proteins. Some are enzymes, which speed up biochemical reactions. Others include hormones, which serve a signaling function, and antibodies, which the immune system uses to fight disease. Proteins also serve as construction materials that give the cell its structure. Before the work of Ciechanover, Hershko, and Rose, a large amount of research had already been focused on understanding how cells make proteins, namely, the way cells use chemically coded instructions in DNA to link amino acids into highly precise sequences. Indeed, five Nobel Prizes had been awarded for such work.

      Through their research in the 1970s and early 1980s, Ciechanover, Hershko, and Rose discovered a process that involves a series of carefully orchestrated steps by which cells degrade, or destroy, the proteins that no longer serve any useful purpose. In the first step, a tag attaches to the protein targeted for destruction. The tag is a molecule called ubiquitin (from the Latin ubique, meaning “everywhere,” because it occurs in so many different cells and organisms). Once attached to the fated protein, ubiquitin accompanies it to a proteasome—essentially a sack of powerful enzymes that chop the protein into its component amino acids. (The typical human cell contains about 30,000 proteasomes.) The outer membrane of the proteasome admits only proteins carrying a ubiquitin molecule. The ubiquitin molecule detaches before entering the proteasome, and cells—forever thrifty— reuse it to tag yet another protein for destruction.

      Ciechanover, Hershko, and Rose demonstrated that ubiquitin-mediated protein degradation also plays a key role in a kind of a cellular quality-control program—ubiquitin and proteasomes cull about one in every three new proteins manufactured by cells, apparently because of manufacturing defects. The three scientists also showed that ubiquitin-mediated protein degradation helps control a number of other critical biochemical processes. These include cell division, the repair of defects in DNA, and gene transcription, the process in which genes use their coded instructions to manufacture a protein.

      Diseases result when the protein-degradation system does not work normally. For example, in cystic fibrosis, a hereditary disease, the protein-degradation system corrals and destroys a protein needed by the lungs and certain other organs to function normally. As a result, thick mucus accumulates inside the organs, impairing their function and increasing the risk of serious infections. Faulty protein degradation also helps explain the link between infection with human papillomavirus and an increased risk of cervical cancer. This type of infection causes the destruction of a protein needed by the cells to repair errors in DNA and thereby permits the accumulation of mutations that can lead to the development of cancer. By understanding the ubiquitin-mediated system of protein degradation, researchers hoped eventually to develop drugs against these and other similar diseases.

Michael Woods

Prize for Physics
      Three American researchers shared the 2004 Nobel Prize for Physics for discoveries about the force that binds together quarks—the smallest building blocks of matter—and holds together the nucleus of the atom. The recipients of the award were David J. Gross of the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara; H. David Politzer of the California Institute of Technology (Caltech); and Frank Wilczek of the Massachusetts Institute of Technology (MIT).

      Gross was born Feb. 19, 1941, in Washington, D.C. He received a Ph.D. in physics from the University of California, Berkeley, in 1966. In 1969 he joined the faculty at Princeton University, where he served until 1997, when he became the director of the Kavli Institute. Politzer, born Aug. 31, 1949, in New York City, received a Ph.D. in physics from Harvard University in 1974. He joined the faculty at Caltech in 1975. Wilczek, born May 15, 1951, was also born in New York City. As a graduate student, Wilczek studied under Gross, and he received a Ph.D. in physics from Princeton University in 1974. Wilczek served on the faculty at Princeton University from 1974 to 1981, and he was a professor at the Institute for Advanced Study, Princeton, N.J., from 1989 until 2000, when he moved to MIT.

      The prizewinning work of the three scientists arose from physics experiments conducted in the early 1970s with particle accelerators, or “atom smashers,” to study quarks and the force that acts on them. This force, called the strong force, or colour force, is one of the four fundamental forces in nature. The other three are the weak force, which is involved in the radioactive decay of certain chemical elements; the electromagnetic force, responsible for phenomena such as magnetism and friction; and gravitation, the attractive force between all particles having mass.

      The two most familiar forces are the electromagnetic force and gravitation. Although they differ in strength, both become weaker with distance. Gross, Politzer, and Wilczek discovered that the force that governs the interaction between quarks worked in a way that seemed to defy logic. It appeared that quarks were so tightly bound together that they could not be separated as individual particles but that the closer quarks approached one another, the weaker the strong force became. When quarks were brought very close together, the force was so weak that the quarks acted almost as if they were free particles not bound together by any force. When the distance between two quarks increased, the force became greater—an effect analogous to the stretching of a rubber band. In 1973 Gross, Politzer, and Wilczek expressed this odd behaviour, known as “asymptotic freedom,” within a mathematical framework. Their work led to a completely new physical theory, quantum chromodynamics (QCD), to describe the strong force. The theory was subsequently validated in many particle-physics experiments.

      Quantum chromodynamics put the finishing touches on the Standard Model of particle physics, which describes the fundamental particles in nature and how they interact with one another through the strong force, the electromagnetic force, and the weak force (but not gravitation). “Perhaps the most tantalizing effect of QCD asymptotic freedom is that it opens up the possibility of a unified description of Nature's forces,” said the Royal Swedish Academy of Sciences, which awarded the physics prize. “Thanks to their discovery, David Gross, David Politzer, and Frank Wilczek have brought physics one step closer to fulfilling a grand dream…a theory of everything.” Such a theory, often called a grand unified theory, would describe all four fundamental forces in a single mathematical framework. It would describe all objects in the universe and how they interact with one another, applying to everything from the tiniest particles crammed together inside the nucleus of atoms to the biggest celestial objects separated by billions of kilometres.

Michael Woods

Prize for Physiology or Medicine
      Two American scientists who conducted pioneering research on the sense of smell were awarded the 2004 Nobel Prize for Physiology or Medicine. The two researchers discovered a family of genes that form smell, or olfactory, receptors. They also identified the way in which the receptors allow humans to recognize and remember some 10,000 odours. Sharing the prize equally were Richard Axel of the Howard Hughes Medical Institute at Columbia University, New York City, and Linda B. Buck of the Fred Hutchinson Cancer Research Center, Seattle, Wash.

      Axel was born July 2, 1946, in New York City. He received an M.D. from Johns Hopkins University School of Medicine, Baltimore, Md., in 1970. He joined the Howard Hughes Medical Institute as an investigator in 1984. Buck, born Jan. 29, 1947, in Seattle, received a Ph.D. in immunology in 1980 from the University of Texas Southwestern Medical Center. The two first worked together in the early 1980s at Columbia University, where Axel was a professor and Buck was his postdoctoral student. Buck held various positions at the Howard Hughes Medical Institute and at Harvard Medical School from 1984 until 2002, when she joined the Fred Hutchinson Cancer Institute.

      In 1991 Axel and Buck jointly published a landmark scientific paper, based on research they had conducted with laboratory rats, that contained the first description of a family of approximately 1,000 types of olfactory receptors. Olfactory receptors are proteins responsible for detecting the odorant molecules that waft through the air and for generating the signals that the brain interprets as smells. The proteins, called G-proteins, were known to play a role in other kinds of cell signaling. The scientific paper also described the family of 1,000 genes that encode, or produce, olfactory receptors. Axel and Buck showed that every olfactory receptor cell expresses (turns on) only one of the odorant-receptor genes. By recording electric signals from single olfactory receptor cells, Buck and Axel showed that each type of receptor could react to several related odorous substances.

      Olfactory receptors are located in cells clustered within a small area in the back of the nasal cavity and are embedded in the surface of nerve cells. Odorant molecules from flowers, perfumes, food, and other sources drift through the air and enter the nose. There they attach to and activate corresponding types of olfactory receptors, which send electric signals to the brain. Nerves link the receptor cells directly to the olfactory bulb, the main region of the brain involved in the sense of smell. Nerve signals from the olfactory receptors indicate that an odour is present in the environment. Buck and Axel showed that each receptor cell has only one type of odour receptor, which is specialized to recognize a few odours. Olfactory receptor cells specializing in the same type of odours are linked to the same areas of the brain. Most odours consist of several different kinds of odorant molecules. The brain combines information from several types of receptors in specific patterns, which are experienced as distinct odours.

      Although their initial research was on laboratory rats, Axel and Buck later determined that most of the details they uncovered about the sense of smell are virtually identical in rats, humans, and other animals. The work of Axel and Buck also helped boost scientific interest in the possible existence of human pheromones, odorant molecules known to trigger sexual activity and certain other behaviour in many animals. One difference they discovered was that humans have only about 350 types of working olfactory receptors, about one-third the number in rats. Nevertheless, the genes that encode olfactory receptors in humans still account for about 3% of all human genes. Scientists were astounded at the sheer number of the types of olfactory receptors needed for the sense of smell. (The human eye can distinguish an enormous number of variations in colour with only three types of receptors—blue, green, and red.) Some odour receptor genes in humans were probably lost during evolution because the sense of smell became less important than the other senses for human survival. In other animals, however, the sense of smell remains critical for survival. Many newborn animals use the sense of smell to locate the mother's teats and begin nursing. Smells also help adult animals locate food and alert them to enemies and other threats.

Michael Woods

▪ 2004


Prize for Peace
      The 2003 Nobel Prize for Peace was awarded to Shirin Ebadi, an Iranian lawyer, writer, and teacher who had gained prominence as an advocate for democracy and human rights. She was known particularly for her efforts to establish and protect the rights of women and children in the face of a hostile Iranian government. In announcing the award, the Norwegian Nobel Committee said, “As a lawyer, judge, lecturer, writer, and activist, she has spoken out clearly and strongly in her country, Iran, and far beyond its borders. She has stood up as a sound professional, a courageous person, and has never heeded the threats to her own safety.” She was the first Iranian to be awarded the Prize for Peace.

      Ebadi, who was born in 1947 in Hamadān, Iran, received a degree in law in 1969 from the University of Tehran. She was one of the first women judges in Iran and from 1975 to 1979 was head of the city court of Tehran. After the 1979 revolution and the establishment of an Islamic republic, however, women were deemed unsuitable to serve as judges, and she was dismissed from the position. She then practiced law and taught at the University of Tehran, and she became known as a fearless defender of the rights of Iranian citizens. In court she defended women and dissidents, as well as a number of victims of the conservative religious regime, including the families of writers and intellectuals murdered in 1999–2000. She also distributed evidence implicating government officials in the murders of students at the University of Tehran in 1999, for which she was jailed for three weeks in 2000. Found guilty, she was given a prison term, barred from practicing law for five years, and fined, although her sentence was later suspended. Among her writings were The Rights of the Child: A Study of Legal Aspects of Children's Rights in Iran (1994) and History and Documentation of Human Rights in Iran (2000). She also was founder and head of the Association for Support of Children's Rights in Iran.

      The awarding of the Nobel Prize for Peace was commonly understood to have political overtones, and this was especially evident in 2003. The choice of Ebadi was widely viewed as an attempt by the Norwegian Nobel Committee to support the reformers in Iran against that country's hard-line clerics and to promote the view that Islam was compatible with equality before the law, freedom of speech and of religion, and other democratic practices, as well as with the doctrine of human rights. The committee said, “Ebadi is a conscious Muslim. She sees no conflict between Islam and fundamental human rights. It is important to her that the dialogue between the different cultures and religions of the world should take as its point of departure their shared values.” Although Muslims had earlier won the Nobel Prize for Peace—Egyptian Pres. Anwar el-Sadat shared the prize in 1978 with Israeli Prime Minister Menachem Begin, and Palestinian leader Yasir Arafat shared the prize in 1994 with Israeli Prime Minister Yitzhak Rabin and Israeli Foreign Minister Shimon Peres—Ebadi was the first Muslim woman to be given the award.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2003 to American Robert F. Engle and Clive W.J. Granger of the U.K. for their respective contributions to the development of sophisticated techniques for the analysis of time series data. Their econometric methods enabled a chronological succession or series of values of nonstationary and volatile variables, such as household consumption, inflation, and stock prices, to be measured with greater accuracy than was possible with the standard methods previously used to find explanations of movements of variables over time. The two prizewinners spent much of their careers in the 1970s and '80s on their seminal work at the University of California, San Diego.

      Engle received the Nobel for the improved mathematical techniques he developed for the evaluation and more accurate forecasting of risk, which enabled researchers to test if and how volatility in one period was related to volatility in another period. This had particular relevance in financial market analysis in which the investment returns of an asset were assessed against its risk and stock prices and returns could exhibit extreme volatility. While periods of strong turbulence caused large fluctuations in prices in stock markets, these were often followed by relative calm and slight fluctuations. Inherent in Engle's autoregressive conditional heteroskedasticity (known as ARCH) model approach was the concept that while most volatility is embedded in the random error, its variance depends on previously realized random errors, with large errors being followed by large errors and small by small. This contrasted with earlier models wherein the random error was assumed to be constant over time. Engle's methods and the ARCH model had led to a proliferation of tools for analyzing stocks and had enabled economists to make more accurate forecasts.

      Granger developed concepts and analytic methods to establish meaningful relationships between nonstationary variables, such as exchange rates and inflation rates. His adoption of long- and short-run perspectives increased understanding of the longer-term changes in macroeconomic indicators where, for example, a country's annual GDP might grow long term but in the short term might suffer because of a sharp rise in commodity prices or a global economic downturn. Granger demonstrated that estimated relationships between variables that changed over time could be nonsensical and misleading because the variables were wrongly perceived as having a relationship. Even where a relationship did exist, it could be a purely temporary one. Fundamental to his methods was his discovery that a specific combination of two or more nonstationary time series could be stationary, a combination for which he invented the term cointegration. This was in accord with the economic theory that asserts that two economic variables that share equilibrium may deviate in the short term but over the long run will adjust to equilibrium. Through his cointegration analysis, Granger showed that the dynamics in exchange rates and prices, for example, are driven by a tendency to smooth out deviations from the long-run equilibrium exchange rate and short-run fluctuations around the adjustment path.

      Engle was born in November 1942 in Syracuse, N.Y., and was educated at Williams College, Williamstown, Mass. (B.S., 1964), and Cornell University, Ithaca, N.Y. (M.S., 1966; Ph.D., 1969). He was on the faculty at the Massachusetts Institute of Technology (1969–75) until he moved to the University of California, where he became a professor in 1977 and later the chair in economics. In 1999 he transferred to the Stern School of Business at New York University, and from 2000 he was the Michael Armellino Professor in the Management of Financial Services. His teaching and research interests were in financial econometrics covering equities, futures and options, interest rates, and exchange rates. Engle was a fellow of the Econometric Society, the American Academy of Arts and Sciences, and the American Statistical Association. He also held associate editorships on several academic journals, notably the Journal of Applied Econometrics, of which he was coeditor (1985–89).

      Granger was born in Swansea, Wales, on Sept. 4, 1934, and was educated at the University of Nottingham, Eng. (B.A., 1955; Ph.D., 1959), where he became a lecturer in statistics in the mathematics department. In 1974 he took up a professorship at the University of California. He held fellowships at the International Institute of Forecasters, the Econometric Society, the American Academy of Arts and Sciences, and the American Economic Association, among others, and was a corresponding fellow of the British Academy. Granger's books and academic papers covered a wide range of subjects from time series analysis and forecasting to price research, statistical theory, and applied statistics.

Janet H. Clark

Prize for Literature
      The 2003 Nobel Prize for Literature was awarded to South African author J.M. Coetzee, a preeminent and uncompromising voice in the struggle for human dignity and self-preservation. An innovative and provocative novelist, essayist, and literary critic, Coetzee gained international recognition early in his career and was the first writer to receive the United Kingdom's Booker Prize (now the Man Booker Prize) twice. He belonged to the generation of South African writers—including André Brink, Breyten Breytenbach, Oswald Mbuyiseni Mtshali, and Mongane Wally Serote—that emerged during the apartheid era. Coetzee was the second South African Nobel laureate for literature and the fourth African laureate, after Wole Soyinka of Nigeria in 1986, Naguib Mahfouz of Egypt in 1988, and Coetzee's compatriot Nadine Gordimer in 1991.

      Born on Feb. 9, 1940, in Cape Town, S.Af., John Maxwell Coetzee was the son of Afrikaners, but he was reared bilingual, attending English-language schools. He studied at the University of Cape Town (UCT), where he earned a B.A. in English in 1960 and another in mathematics the following year. In 1962 Coetzee left South Africa for England, where he worked as a computer programmer and completed an M.A. from UCT. He earned a Ph.D. in English in 1969 from the University of Texas at Austin. From 1968 to 1971 Coetzee taught at the State University of New York at Buffalo, and he then returned to South Africa, where he became a lecturer in 1972 and, later, a professor of literature at UCT.

      Highly regarded as a writer of striking originality, Coetzee experimented with diverse literary forms from historical fiction to political fable. His first published work, entitled Dusklands (1974), consisted of two novellas, “The Vietnam Project” and “The Narrative of Jacobus Coetzee,” which examined colonialism in the 20th and 18th centuries, respectively, and incriminated the policies of both the United States and colonial South Africa. His novel In the Heart of the Country (U.S. title From the Heart of the Country) was written originally as a bilingual Afrikaans-English text but was first published in a wholly English version in 1977. The bilingual edition was issued in South Africa a year later. This work explored the emotional and psychological demise of its protagonist, whose vision of reality is distorted by the solitude and barrenness of her existence. The novel received South Africa's Central News Agency (CNA) Literary Award. The publication in 1980 of the politically inspired Waiting for the Barbarians established Coetzee as a major South African writer, receiving both the CNA Literary Award and Britain's James Tait Black Memorial Prize for fiction. The critically acclaimed Life & Times of Michael K (1983) received a third CNA Literary Award, the Prix Femina Étranger in France, and the Booker Prize.

      In 1986 Coetzee published the enigmatic Foe, a postmodern retelling of Daniel Defoe's Robinson Crusoe (1719). His novel Age of Iron (1990) was a tour de force set in contemporary South Africa; it examined the variations and consequences of complicity with a political regime guided by racial prejudice and repression. Coetzee's allegorical narrative The Master of Petersburg (1994) was followed in 1999 by the Booker Prize-winning Disgrace, a novel of postapartheid South Africa in which a university professor charged with sexual harassment must confront the ramifications of guilt and retribution. Elizabeth Costello (2003), a fictional hybrid incorporating selections of Coetzee's previously published nonfiction, analyzed the relationship between the writer and society.

      Coetzee published two volumes of autobiographical memoirs, Boyhood: Scenes from Provincial Life (1997) and its sequel, Youth (2002). His works of nonfiction included White Writing: On the Culture of Letters in South Africa (1988), Doubling the Point: Essays and Interviews (1992), Giving Offense: Essays on Censorship (1996), and Stranger Shores: Literary Essays, 1986–1999 (2001). As a novelist Coetzee combined ambiguity with irony to produce fiction of extraordinary breadth and integrity. Cited by the Swedish Academy as a writer “who in innumerable guises portrays the surprising involvement of the outsider,” Coetzee filled the void of isolation and despair with a balance of tension and empathy, as his protagonist from In the Heart of the Country proclaims: “We are the castaways of God as we are the castaways of history” who “wish only to be at home in the world.”

Steven R. Serafin

Prize for Chemistry
      Two American scientists shared the 2003 Nobel Prize for Chemistry for discoveries about structure and operation of the many crucial porelike channels that perforate the outer surface of cells in humans and other living things. Peter Agre of Johns Hopkins University, Baltimore, Md., received half the prize for the discovery of water channels in cell membranes; and Roderick MacKinnon, of Rockefeller University, New York City, got the other half for research on ion channels.

      Agre was born Jan. 30, 1949, in Northfield, Minn. He earned a medical doctorate from Johns Hopkins in 1974. In 1981, following postgraduate training and a fellowship, he returned to Hopkins, where in 1993 he advanced to professor of biological chemistry. MacKinnon, born Feb. 19, 1956, in Burlington, Mass., gained an M.D. degree from Tufts University's School of Medicine, Boston, in 1982. After practicing medicine for several years, he turned to basic research, beginning in 1986 with postdoctoral work on ion channels at Brandeis University, Waltham, Mass. In 1989 he joined Harvard University, and in 1996 he moved to Rockefeller as a professor and laboratory head. A year later he was appointed an investigator at Rockefeller's Howard Hughes Medical Institute.

      Biologists realized in the mid-1800s that specialized openings must exist in cell membranes, the film of fatty material that encloses the cells of living organisms. Water, for instance, flows in and out of cells without leakage of other essential substances from inside the cell. Later in the century scientists discovered that ions also enjoy free passage in and out of cells. Ions are electrically charged atoms, such as those of sodium and potassium. Transport of ions through the membrane of motor nerve cells, for example, is needed to trigger the nerve impulses that ultimately make muscles contract or relax. Many diseases involving the kidneys, heart, and nervous system occur when ion channels do not work normally.

      With water and ion channels so important in health and disease, generations of scientists in the 20th century tried to find them, determine their structure, and understand how they work. Not until 1988, however, did Agre isolate a type of protein molecule in the cell membrane that he soon came to believe was the long-sought water channel. One test of his hypothesis involved comparing how cells with and without the protein in their membranes responded when placed in a water solution. Cells with the protein swelled up as water flowed in, while those lacking the protein remained the same size.

      Agre named the protein aquaporin. Researchers subsequently discovered a whole family of the proteins in animals, plants, and even bacteria. Two different aquaporins were found to play a major role in the mechanism by which human kidneys concentrate dilute urine and return the extracted water to the blood.

      While Agre was beginning his landmark work, MacKinnon was devoting most of his time to treating patients. He switched to research at age 30 after he had become fascinated with the studies being done on ion channels. The channels, which also proved to be proteins, not only admitted ions without allowing cell contents to seep out but also were very selective. They seemed to have “filters” that passed one type of ion—potassium, for instance—while blocking others, but no one knew how those filters worked.

      MacKinnon understood that the problem could be solved by obtaining sharper images of channels with X-ray diffraction, a technique that involves passing X-rays through crystals of a material to create images of their molecular structure. He rapidly became expert in X-ray diffraction technology and within a few years astonished scientists who had spent entire careers in ion-channel research by reporting the three-dimensional molecular structure of an ion channel.

      His results, obtained in 1998, allowed MacKinnon to explain how the ion filter allowed passage of potassium ions but blocked sodium ions, even through the latter are smaller. The channel, MacKinnon found, has an architecture sized in a way that easily strips potassium ions—but not sodium ions—of their associated water molecules and allows them to slip through. MacKinnon also discovered a molecular “sensor” in the end of the channel nearest the cell's interior that reacts to conditions around the cell, sending signals that open and close the channel at the appropriate times. His pioneering work allowed scientists to pursue the development of drugs for diseases—e.g., of the heart or nervous system—in which ion channels play a role.

Michael Woods

Prize for Physics
      Three scientists who explained how certain materials develop their unusual properties of superconductivity and superfluidity when chilled to very low temperatures were awarded the 2003 Nobel Prize for Physics. Their theories laid the foundation for new insights into the properties of matter and for practical applications in medicine and other areas. Sharing the prize equally were Alexei A. Abrikosov of Argonne (Ill.) National Laboratory; Vitaly L. Ginzburg of the P.N. Lebedev Physical Institute, Moscow; and Anthony J. Leggett of the University of Illinois at Urbana-Champaign.

      Abrikosov was born June 25, 1928, in Moscow. He received doctorates in physics from the U.S.S.R. Academy of Sciences' Institute for Physical Problems (now the P.L. Kapitsa Institute) in 1951 and 1955. Following work spanning several decades at scientific institutions and universities in the former Soviet Union, he joined Argonne in 1991, becoming distinguished scientist in its materials science division. Ginzburg, born Oct. 4, 1916, in Moscow, earned a doctorate in physics at M.V. Lomonosov Moscow State University in 1938. He headed the theory group at the Lebedev Institute from 1971 to 1988. Leggett, born March 26, 1938, in London, received a Ph.D. in physics from the University of Oxford in 1964. In 1967 he joined the faculty of the University of Sussex, where he served until 1983, when he moved to the University of Illinois.

      The three did their work between the 1950s and the 1970s in the field of quantum physics, which deals with effects that occur among the subatomic particles that make up matter. Usually these effects are unnoticeable in the everyday world of larger objects, but in selecting the winners for the 2003 prize, the Royal Swedish Academy of Sciences focused attention on two quantum phenomena that manifest themselves in the familiar world.

      Physicists had known about superconductivity since 1911, when it was observed in the metal mercury. Superconductors are materials that lose resistance to the flow of electricity when cooled below a certain critical (and typically very low) temperature. Research on the topic had practical importance because electrical resistance accounted for costly losses in long-distance power lines. Resistance in copper and aluminum wire caused electricity to be wasted as heat en route from generating stations to consumers. Electrical resistance also was a barrier to the development of increasingly powerful electromagnets.

      The 1972 Nobel physics prize went to scientists who developed the first theory explaining why certain metals, termed type I superconductors, lose electrical resistance. At temperatures near absolute zero (−273.15 °C, or −459.67 °F), the electrons in these materials form pairs (Cooper pairs) whose interaction with the material's atoms allows them to flow as electric current without resistance. The theory, however, did not explain superconductivity in another group of materials that had important potential industrial and commercial uses. Unlike type I superconductors, these materials, termed type II, remain superconducting even in the presence of very powerful magnetic fields, with superconductivity and magnetism existing within them at the same time.

      Abrikosov devised a theoretical explanation for type II superconductivity. His starting point was an earlier theory about type I superconductors that Ginzburg and others had developed and refined. “Although these theories were formulated in the 1950s,” stated the Swedish Academy, “they have gained renewed importance in the rapid development of materials with completely new properties. Materials can now be made superconductive at increasingly high temperatures and strong magnetic fields.” Ginzberg's and Abrikosov's theoretical achievements enabled other scientists to create and test new superconducting materials and build more powerful electromagnets. Among the practical results were magnets critical for the development of magnetic resonance imaging (MRI) scanners used in medical diagnostics. (See Prize for Physiology or Medicine (Nobel Prizes ).) The materials used in MRI magnets are all type II superconductors.

      Leggett did his prizewinning research on the related quantum phenomenon of superfluidity, in which certain extremely cold liquid substances flow without internal resistance, or viscosity. Superfluids exhibit a variety of weird behaviour, including the ability to flow up the sides and out the top of containers. Scientists had known since the 1930s that the common form of helium, the isotope helium-4, becomes a superfluid when chilled. A theoretical explanation for the phenomenon won the 1962 Nobel Prize for Physics.

      In the 1970s researchers discovered that the explanation did not work for the much rarer helium isotope helium-3, which was also found to be a superfluid. Leggett filled the gap in theoretical research by showing that electrons in helium-3 form pairs in a situation similar to, but much more complicated than, the electron pairs that form in superconducting metals. His work found wide application in science ranging from cosmology to the study of subatomic particles. Research on superfluid helium-3 also “may lead to a better understanding of the ways in which turbulence arises—one of the last unsolved problems of classical physics,” said the Swedish Academy.

Michael Woods

Prize for Physiology or Medicine
      The 2003 Nobel Prize for Physiology or Medicine was awarded to two pioneers of magnetic resonance imaging (MRI), a computerized scanning technology that produces images of internal body structures, especially those comprising soft tissues. The recipients were Paul Lauterbur of the University of Illinois at Urbana-Champaign and Sir Peter Mansfield of the University of Nottingham, Eng.

      “A great advantage with MRI is that it is harmless according to all present knowledge,” stated the Nobel Assembly at the Karolinska Institute in Stockholm, which awarded the prize. Unlike X-ray and computed tomography (CT) examinations, MRI avoided the use of potentially harmful ionizing radiation; rather, it produced its images with magnetic fields and radio waves. MRI scans spared patients not only many X-ray examinations but also surgical procedures and invasive tests formerly needed to diagnose diseases and follow up after treatments. More than 60 million MRI procedures were performed in 2002 alone, according to the Nobel Assembly.

      Lauterbur, born May 6, 1929, in Sidney, Ohio, earned a Ph.D. in chemistry from the University of Pittsburgh, Pa., in 1962. He served as a professor at the University of New York at Stony Brook from 1969 to 1985, when he accepted the position of professor at Urbana-Champaign and director of its Biomedical Magnetic Resonance Laboratory. Mansfield was born Oct. 9, 1933, in London and received a Ph.D. in physics from the University of London in 1962. Following two years as a research associate in the U.S., he joined the faculty of the University of Nottingham, where he remained for essentially his entire career and became professor in 1979. Mansfield was knighted in 1993.

      When Lauterbur and Mansfield undertook their work in the early 1970s, the technology underpinning MRI was a laboratory research tool. Called nuclear magnetic resonance (NMR) spectroscopy, it involves putting a sample to be analyzed in a strong magnetic field and then irradiating it with weak radio waves at the appropriate frequency. In the presence of the magnetic field, the nuclei of certain atoms—for example, ordinary hydrogen—absorb the radio energy; i.e., they show resonance at that particular frequency. Because the resonance frequency depends on the kind of nuclei and is influenced by the presence of nearby atoms, absorption measurements (absorption signal spectra) can provide information about the molecular structure of various solids and liquids. When the nuclei return to their previous energy levels, they emit energy, which carries additional information. NMR spectroscopy has remained a key tool in chemical analysis.

      When studying molecules with NMR, chemists always had tried to maintain a steady magnetic field, because variations made the absorption signals fuzzy. Lauterbur realized that if the magnetic field was deliberately made nonuniform, information contained in the signal distortions could be used to create two-dimensional images of a sample's internal structure. While at Stony Brook, he worked evenings developing his idea, using an NMR unit borrowed from campus chemists.

      MRI imaging succeeds because the human body is about two thirds water, whose molecules are made of hydrogen and oxygen atoms. There are differences in the amount of water present in different organs and tissues. In addition, the amount of water often changes when body structures become injured or diseased; those variations show up in MRI images.

      When the body is exposed to MRI's magnetic field and its pulses of radio waves, the nucleus of each hydrogen atom in water absorbs energy; it then emits the energy in the form of radio waves, or resonance signals, as it returns to its previous energy level. Electronic devices detect the myriad resonance signals from all the hydrogen nuclei in the tissue being examined, and computer processing builds cross-sectional images of internal body structures, based on differences in water content and movements of water molecules. Computer processing also can stack the cross sections in sequence to create three-dimensional, solid images.

      Mansfield's research helped transform Lauterbur's discoveries into a practical technology with wide uses in everyday medicine. He developed a way of using the nonuniformities, or gradients, introduced in the magnetic field to identify differences in the resonance signals more precisely. In addition, he developed new mathematical methods for quickly analyzing information in the signal and showed how technical changes in MRI could lead to extremely rapid imaging.

      (Part of the 2003 Nobel Prize for Physics was awarded for advances in superconductivity with application to MRI. See Prize for Physics (Nobel Prizes ).)

Michael Woods

▪ 2003


Prize for Peace
      The 2002 Nobel Prize for Peace was awarded to Jimmy Carter, 39th president of the United States. The Norwegian Nobel Committee honoured his “decades of untiring effort to find peaceful solutions to international conflicts, to advance democracy and human rights, and to promote economic and social development.” Among other things, the committee specifically cited Carter's role in the Camp David Accords between Egypt and Israel, as well as the projects of the Carter Center after he left office, including its work in monitoring elections and eradicating diseases. He was the third U.S. president, after Theodore Roosevelt (1906) and Woodrow Wilson (1919), to win the prize.

      James Earl Carter, Jr., was born on Oct. 1, 1924, in Plains, Ga. He graduated from the U.S. Naval Academy in Annapolis, Md., in 1946 and served for seven years in the navy. Upon the death of his father in 1953, he returned to Georgia to manage the family's peanut farm. A Democrat, he was elected to the Georgia state Senate in 1962 and reelected in 1964, and he was elected governor in 1970. In 1976 he won the U.S. presidency. His most dramatic foreign-policy achievement was the 1978 Camp David Accords, in which Egyptian Pres. Anwar el-Sadat and Israeli Prime Minister Menachem Begin reached agreements that formed the basis of a peace treaty. Problems dogged the Carter presidency, however, among them the Iranian hostage crisis of 1979. Further, the administration was beset by domestic economic worries, and Carter lost his bid for reelection in 1980.

      In 1982, in conjunction with Emory University in Atlanta, Ga., he founded the Carter Center, which served as the base for much of his subsequent work. Carter monitored various international elections, among them those in Nicaragua and East Timor. He also intervened in disputes involving North Korea, Haiti, Bosnia and Herzegovina, and other countries. In 2002 he became the first sitting or former U.S. president to travel to Cuba since Fidel Castro came to power. Beginning in 1984, Carter and his wife, Rosalynn, who was his partner in many of his undertakings, devoted one week of each year to Habitat for Humanity, a nonprofit Christian organization that builds affordable housing for the poor. A lifelong Baptist, he spoke freely of the role of religion in his life and work. Among his many books was Keeping Faith: Memoirs of a President (1982).

      In implied criticism of the policies of U.S. Pres. George W. Bush, the Nobel statement commented, “In a situation currently marked by threats of the use of power, Carter has stood by the principles that conflicts must as far as possible be resolved through mediation and international cooperation based on international law, respect for human rights, and economic development.” At the same time, committee members emphasized that Carter had been awarded the prize on merit. Although Sadat and Begin had won the Nobel Prize for Peace in 1978, a technicality prevented Carter from also being considered at the time. He had been nominated virtually every year since, and many observers saw the prize as an honour long overdue.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2002 to Israeli-born Daniel Kahneman and American Vernon L. Smith, who pioneered the use in decision making of psychological and experimental economics, respectively. The results of their work undermined two fundamental aspects of traditional economic theory—that in complex market situations people make rational decisions based on material incentives and that economics was a nonexperimental science that relied exclusively on field data.

      Kahneman received the Nobel “for having integrated insights from psychological research into economic science, especially concerning human judgment and decision-making under uncertainty.” He drew on cognitive psychology in relation to the mental processes used in forming judgments and making choices in order to increase understanding of how people make economic decisions. Kahneman's research with the late Amos Tversky on decision making under uncertainty resulted in the formulation of a new branch of economics, prospect theory, which was the subject of their seminal article “Prospect Theory: An Analysis of Decisions Under Risk” (1979). Previously, economists had believed that people's decisions are determined by the expected gains from each possible future scenario multiplied by its probability of occurring, but if people make an irrational judgment by giving more weight to some scenarios than to others, their decision will be different from that predicted by traditional economic theory. Kahneman's research (based on surveys and experiments) showed that his subjects were incapable of analyzing complex decision situations when the future consequences were uncertain. Instead, they relied on heuristic shortcuts, or rule-of-thumb, with few people evaluating the underlying probability.

      Smith was awarded the Nobel “for having established laboratory experiments as a tool in empirical economic analysis, especially in the study of alternative market mechanisms.” His early work was inspired by the classroom experiments of his teacher at Harvard University, E.H. Chamberlin, who tested the neoclassical theory of perfect competition. Smith improved on the process of testing the fundamental economic theory that under perfect competition the market price of any product or service establishes an equilibrium between supply and demand at the level where the value assigned by a marginal buyer is equal to that of a marginal seller. The results of Smith's experiments, published in 1962, involved the random designation of the roles of buyers and sellers with different and uninformed valuations of a commodity, expressed as a lowest acceptable selling price and highest acceptable buying price. He was able to determine the theoretical equilibrium, or acceptable market price. Unexpectedly, the prices obtained in the laboratory were close to the theoretical values. Many of his experiments focused on the outcome of public auctions; he showed that the way in which the bidding was organized affected the selling price. Smith also devised “wind-tunnel tests,” where trials of new alternative market designs, such as those for a deregulated industry, could be tested.

      Kahneman was born on March 5, 1934, in Tel Aviv, Israel, and was educated at Hebrew University, Jerusalem (B.A., 1954), and the University of California, Berkeley (Ph.D., 1961). He was a lecturer (1961–70) and professor (1970–78) of psychology at Hebrew University, and from 2000 he held a fellowship at that university's Center for Rationality. From 1993 Kahneman was Eugene Higgins Professor of Psychology at Princeton University and professor of public affairs at Princeton's Woodrow Wilson School of Public and International Affairs. He was on the editorial boards of several academic journals, notably the Journal of Behavioral Decision Making and the Journal of Risk and Uncertainty.

      Smith was born on Jan. 1, 1927, in Wichita, Kan. He studied electrical engineering at the California Institute of Technology (Caltech; B.S., 1949), then switched to economics at the University of Kansas (M.A., 1951) and Harvard (Ph.D., 1955). Smith taught and did research at Purdue University, West Lafayette, Ind. (1955–67), Brown University, Providence, R.I. (1967–68), the University of Massachusetts (1968–75), Caltech (1973–75), and the University of Arizona (1975–01), where he was the Regents' Professor of Economics from 1988. In 2001 he was named professor of economics and law at George Mason University, Fairfax, Va. Much of Smith's commercial work was related to the deregulation of energy in the U.S., Australia, and New Zealand. He served on the editorial boards of several journals and wrote extensively on subjects ranging from capital theory and finance to natural resource economics and experimental economics.

Janet H. Clark

Prize for Literature
      The 2002 Nobel Prize for Literature was awarded to Hungarian author and Holocaust survivor Imre Kertész. He was cited by the Swedish Academy for writing that “upholds the fragile experience of the individual against the barbaric arbitrariness of history.” One of the many Eastern European writers who endured under the veil of communism, Kertész identified in part with the postwar literary generation that emerged in the wake of the 1956 uprising, including novelists Miklós Mészöly and György Konrád, poet Sándor Csoóri, and dramatist István Csurka. After the violent Soviet suppression of the uprising, writers who remained in Hungary were subjected to the mandate of official censorship or risked arrest and imprisonment; others fell silent or were forced into exile. Preferring instead a form of self-imposed anonymity as protest against the communist dictatorship, Kertész was largely ignored for much of his career. With the fall of communism in Hungary following what was deemed the “quiet revolution” in 1989, Kertész resumed an active literary role—gaining national as well as international recognition as a writer—and at the age of 72 he became the first Hungarian to be named a Nobel laureate in literature.

      Kertész was born on Nov. 9, 1929, in Budapest. He was 14 when he was deported with other Hungarian Jews during World War II to the Auschwitz concentration camp in Nazi-occupied Poland. He was later sent to the Buchenwald camp in Germany, where he was liberated in May 1945. Returning to Hungary, he worked as a journalist for the newspaper Világosság but was dismissed in 1951 following the communist takeover. Refusing to submit to the cultural policies imposed by the new regime, Kertész turned to translation as a means of supporting himself without having to compromise his artistic integrity. Highly praised as a translator, he specialized in the works of German-language authors, notably Friedrich Nietzsche, Hugo von Hofmannsthal, Sigmund Freud, Arthur Schnitzler, and Ludwig Wittgenstein.

      Kertész was best known for his first and most acclaimed novel, Sorstalanság (Fateless, 1992), which he completed in the mid-1960s but was unable to publish for nearly a decade. When the novel finally appeared in 1975, it received little critical attention but established Kertész as a unique and provocative voice in the dissident subculture within contemporary Hungarian literature. For Kertész the Holocaust was the definitive event of his life; in Sorstalanság he fused the experience of his youth with his determination to provide a truthful account of the persecution and near annihilation of Hungarian Jews during World War II. The adolescent narrator of Sorstalanság is arrested and deported to a concentration camp and confronts the inexplicable horror of human degradation not with outrage or resistance but with seemingly incomprehensible complacency and detachment. For the narrator the brutal reality of atrocity and evil is reconciled by his inherent and inexorable will to survive—without remorse or a need for retribution. With the publication in 1990 of the first German-language edition of the novel, Kertész began to expand his literary reputation in Europe, and the novel was later published in more than 10 languages, including English, French, Spanish, Italian, Dutch, Swedish, and Norwegian.

      Sorstalanság was the first installment in his semiautobiographical trilogy reflecting on the Holocaust, and the two other novels—A kudarc (1988; “Fiasco”) and Kaddis a meg nem született gyermekért (1990; Kaddish for a Child Not Born, 1997)—reintroduced the protagonist of Sorstalanság. In 1991 Kertész published Az angol lobogó (“The English Flag”), a collection of short stories and other short prose pieces, and he followed that in 1992 with Gályanapló (“Galley Diary”), a diary in fictional form covering the period from 1961 to 1991. Another installment of the diary, from 1991 to 1995, appeared in 1997 as Valaki más: a változás krónikája (“I—Another: Chronicle of a Metamorphosis”). His essays and lectures were collected in A holocaust mint kultúra (1993; “The Holocaust as Culture”), A gondolatnyi csend, amig kivégzőoztag újratölt (1998; “Moments of Silence While the Execution Squad Reloads”), and A száműzött nyelv (2001; “The Exiled Language”). In 1995 Kertész received the Brandenburg Literary Prize; the Leipzig Book Prize for European Understanding followed in 1997, and in 2000 he was awarded the WELT-Literature Prize.

Steven R. Serafin

Prize for Chemistry
      Three scientists—an American, a Japanese, and a Swiss—won the 2002 Nobel Prize for Chemistry for having developed techniques to identify and analyze proteins and other large biological molecules. John B. Fenn of Virginia Commonwealth University and Koichi Tanaka of Shimadzu Corp., Kyoto, shared half of the $1 million prize. The remainder went to Kurt Wüthrich of the Swiss Federal Institute of Technology (ETH), Zürich, and the Scripps Research Institute, La Jolla, Calif. The Royal Swedish Academy of Sciences, which awarded the prize, called their achievement a breakthrough that turned “chemical biology into the ‘big science' of our time,” allowing scientists to “both ‘see' the proteins and understand how they function in the cells.”

      Fenn was born June 15, 1917, in New York City. After receiving a Ph.D. in chemistry in 1940 from Yale University, he spent more than a decade in industry before joining Princeton University in 1952. In 1967 he moved to Yale, where he became professor emeritus in 1987. In 1994 Fenn took a post as research professor at Virginia Commonwealth University. Tanaka, born Aug. 3, 1959, in Toyama City, Japan, earned an engineering degree from Tohoku University in 1983. He then joined Shimadzu, a maker of scientific and industrial instruments, and he remained there in various research capacities. Wüthrich was born Oct. 4, 1938, in Aarberg, Switz. He received a Ph.D. in inorganic chemistry in 1964 from the University of Basel and took his postdoctoral training in Switzerland and the U.S. In 1969 he joined ETH, and he became professor of biophysics in 1980. In 2001 he accepted a position at Scripps as a visiting professor.

      Fenn's and Tanaka's prizewinning research expanded the applications of mass spectrometry (MS), an analytic technique used in many fields of science since the early 20th century. MS can identify unknown compounds in minute samples of material, determine the amounts of known compounds, and help deduce molecular formulas of compounds. For decades scientists had employed MS on small and medium-size molecules, but they also dreamed of using it to identify large molecules such as proteins. After the genetic code was deciphered and gene sequences were explored, the study of proteins and how they interact inside cells took on great importance.

      A requirement of MS is that samples be in the form of a gas of ions, or electrically charged molecules. Molecules such as proteins posed a problem because existing ionization techniques broke down their three-dimensional structure. Fenn and Tanaka each developed a way to convert samples of large molecules into gaseous form without such degradation. In the late 1980s Fenn originated electrospray ionization, a technique that involves injecting a solution of the sample into a strong electric field, which disperses it into a fine spray of charged droplets. As each droplet shrinks by evaporation, the electric field on its surface becomes intense enough to toss individual molecules from the droplet, forming free ions ready for analysis with MS. About the same time, Tanaka reported a different method, called soft laser desorption, in which the sample, in solid or viscous form, is bombarded with a laser pulse. As molecules in the sample absorb the laser energy, they let go of each other (desorb) and form a cloud of ions suitable for MS.

      Wüthrich devised a way to apply another analytic technique, nuclear magnetic resonance (NMR), to the study of large biological molecules. Whereas MS excels at revealing kinds and amounts of molecules, NMR provides detailed information about their structure. Developed in the late 1940s, it requires placing the sample in a very strong magnetic field and bombarding it with radio waves. The nuclei of certain atoms, such as hydrogen, in the molecules respond by emitting their own radio waves, which can be analyzed to work out their structural details.

      In the early 1980s, when Wüthrich began his prizewinning work, NMR worked best for small molecules. For large molecules such as proteins, the numerous atomic nuclei present produced an indecipherable tangle of radio signals. Wüthrich's solution, called sequential assignment, sorts out the tangle by methodically matching up each NMR signal with the corresponding hydrogen nucleus in the protein being analyzed. Wüthrich also showed how to use that information to determine distances between numerous pairs of hydrogen nuclei and thereby build up a three-dimensional picture of the molecule. The first complete determination of a protein structure with Wüthrich's method was achieved in 1985, and about 20% of protein structures known to date had been determined with NMR.

Michael Woods

Prize for Physics
      Three astrophysical pioneers won the 2002 Nobel Prize for Physics for discoveries about strange, elusive particles from the Sun and high-energy radiation from a variety of objects and processes in the universe. Raymond Davis, Jr., of the University of Pennsylvania shared half of the $1 million prize with Masatoshi Koshiba of the University of Tokyo. Each man led the construction of giant underground devices to detect neutrinos, ghostly subatomic particles that pass through Earth by the trillions each second. Riccardo Giacconi of Associated Universities, Inc., Washington, D.C., received the other half for seminal discoveries of cosmic sources of X-rays.

      Davis, born Oct. 14, 1914, in Washington, D.C., received a Ph.D. in 1942 from Yale University. After wartime military service, he joined Brookhaven National Laboratory, Upton, N.Y., in 1948, where he remained until retirement in 1984. In 1985 he took a post as research professor with the University of Pennsylvania. Koshiba was born Sept. 19, 1926, in Toyohashi, Japan. After earning a Ph.D. in 1955 from the University of Rochester, N.Y., he joined the University of Tokyo, becoming professor in 1970 and emeritus professor in 1987. Giacconi, born Oct. 6, 1931, in Genoa, Italy, took a Ph.D. in 1954 from the University of Milan. In 1959 he joined the research firm American Science and Engineering, and in 1973 he moved to the Harvard-Smithsonian Center for Astrophysics. He directed the Space Telescope Science Institute from 1981 to 1993 and the European Southern Observatory for the six years following. In 1999 he became president of Associated Universities, Inc., which operates the National Radio Astronomy Observatory.

      Scientists had suspected since the 1920s that the Sun shines because of nuclear fusion reactions that transform hydrogen into helium and release energy. Later, theoretical calculations indicated that countless neutrinos must be released in those reactions and, consequently, that Earth must be exposed to a constant flood of solar neutrinos. Because neutrinos interact weakly with matter, however, only one in every trillion is stopped on its way through the planet. Neutrinos thus developed a reputation as being undetectable.

      Some of Davis's contemporaries had speculated that one type of nuclear reaction might produce neutrinos with enough energy to make them detectable. If such a neutrino collided with a chlorine atom, it should form a radioactive argon nucleus. In the 1960s, in a gold mine in South Dakota, Davis built a neutrino detector, a huge tank filled with over 600 tons of the cleaning fluid tetrachloroethylene. He calculated that high-energy neutrinos passing through the tank should form 20 argon atoms a month on average, and he developed a way to count those exceedingly rare atoms. Over a quarter century of monitoring the tank, he consistently found fewer neutrinos than expected. The deficit, dubbed the solar neutrino problem, implied either that scientists' understanding of energy production in the Sun was wrong or that something happened to the neutrinos en route to Earth in a way that made some of them seem to vanish.

      In the 1980s Koshiba set up a different kind of detector in a zinc mine in Japan. Called Kamiokande II, it was an enormous water tank surrounded by electronic detectors to sense flashes of light produced when neutrinos interacted with atomic nuclei in water molecules. Kamiokande confirmed Davis's results, and, because it was directional, it eliminated any last doubt that neutrinos come from the Sun. In 1987 Kamiokande also detected neutrinos from a supernova explosion outside the Milky Way. After building a larger, more sensitive detector named Super-Kamiokande, which became operational in 1996, Koshiba found strong evidence for what scientists had already suspected—that neutrinos, of which three types are known, change from one type into another in flight. Because Davis's detector was sensitive to only one type, those that had switched identity eluded detection.

      Giacconi began his award-winning work in X-ray astronomy in 1959, about a decade after astronomers had first detected X-rays from the Sun. Because X-rays emitted by cosmic objects are absorbed by Earth's atmosphere, this radiation could be studied only after sounding rockets were developed that could carry X-ray detectors above most of the atmosphere for brief flights. Giacconi conducted a number of these rocket observations, which led to the detection of intense X-rays from sources outside the solar system, including the star Scorpius X-1 and the Crab Nebula supernova remnant.

      Giacconi's achievements piqued the interest of other scientists in the nascent field of X-ray astronomy, but their research was hampered by the short observation times afforded by rockets. For long-term studies Giacconi encouraged construction of an Earth-orbiting X-ray satellite to survey the sky. Named Uhuru (launched 1970), it raised the number of known X-ray sources into the hundreds. Earlier, Giacconi had worked out the operating principles for a telescope that could focus X-rays into images, and in the 1970s he built the first high-definition X-ray telescope. Called the Einstein Observatory (launched 1978), it examined stellar atmospheres and supernova remnants, identified many X-ray double stars (some containing suspected black holes), and detected X-ray sources in other galaxies. In 1976 Giacconi proposed a still more powerful instrument, which was finally launched in 1999 as the Chandra X-Ray Observatory.

Michael Woods

Prize for Physiology or Medicine
      Two Britons—Sydney Brenner and John E. Sulston—and an American—H. Robert Horvitz—shared the 2002 Nobel Prize for Physiology or Medicine for discoveries about how genes regulate tissue and organ development via a key mechanism called programmed cell death, or apoptosis. Their research elucidated the exquisitely tuned process in which certain cells, at the right time and place, get a signal to commit suicide. As was observed by the Nobel Assembly at the Karolinska Institute in Stockholm, which awarded the $1 million prize, “The discoveries are important for medical research and have shed new light on the pathogenesis of many diseases.”

      Brenner was born Jan. 13, 1927, in Germiston, S.Af., and received a Ph.D. in 1954 from the University of Oxford. In 1957 he began work with the Medical Research Council (MRC) in the U.K., where he later directed its Laboratory of Molecular Biology (1979–86) and Molecular Genetics Unit (1986–91). In 1996 Brenner founded the California-based Molecular Sciences Institute, and in 2000 he accepted the position of distinguished research professor at the Salk Institute for Biological Studies, La Jolla, Calif. Sulston, who was born March 27, 1942, earned a Ph.D. in 1966 from the University of Cambridge. Following three years of postdoctoral work in the U.S., he joined Brenner's group at the MRC. From 1992 to 2000 he was director of the Sanger Institute, Cambridge. Horvitz, born May 8, 1947, in Chicago, took his Ph.D. in 1974 from Harvard University. In 1978, after a stint with Brenner at the MRC that had begun in 1974, he moved to the Massachusetts Institute of Technology, where he became a full professor in 1986.

      Programmed cell death is essential for normal development in all animals. During the fetal development of humans, huge numbers of cells must be eliminated as body structures form. Programmed cell death sculpts the fingers and toes, for instance, by removing tissue that was originally present between the digits. Likewise, it removes surplus nerve cells produced during early development of the brain. In a typical adult human, about a trillion new cells develop each day; a similar number must be eliminated to maintain health and to keep the body from becoming overgrown with surplus cells.

      To study programmed cell death in humans, Brenner, Sulston, and Horvitz relied on an animal model, the nematode Caenorhabditis elegans, a near-microscopic soil worm. In the early 1960s Brenner had realized the difficulties of studying organ development and related processes in higher animals, which have enormous numbers of cells. His search for a simple organism with many of the basic biological characteristics of humans led to C. elegans, which begins life with just 1,090 cells. Moreover, the animal is transparent, which allows scientists to follow cell divisions under a microscope; it reproduces quickly; and it is inexpensive to maintain. As researchers later learned, programmed cell death eliminates 131 cells in C. elegans, so that adults wind up with 959 body cells. Brenner's investigations showed that a chemical compound could induce genetic mutations in the worm and that the mutations had specific effects on organ development. His work “laid the foundation for this year's Prize,” the Nobel Assembly stated, and established C. elegans as one of the most important experimental tools in genetics research.

      Sulston in the 1970s mapped a complete cell lineage for C. elegans, tracing the descent of every cell, through division and differentiation, from the fertilized egg. From this he showed that, in worm after worm, exactly the same 131 cells are eliminated by programmed cell death as the animals develop into adults. Sulston also identified the first known mutations in genes involved in the process.

      Beginning in the 1970s Horvitz used C. elegans to try to determine if a specific genetic program controlled cell death. In 1986 he reported the first two “death genes,” ced-3 and ced-4, which participate in the cell-killing process. Later he showed that another gene, ced-9, protects against cell death by interacting with ced-3 and ced-4. Horvitz also established that humans have a counterpart to the ced-3 gene. Scientists later found that most of the genes involved in controlling programmed cell death in C. elegans have counterparts in humans.

      Knowledge about programmed cell death led to important advances not only in developmental biology but also in medicine. It helped, for example, to explain how some viruses and bacteria invade human cells and cause infections. In cancer and some other diseases, programmed cell death was seen to slow down, which allows survival of cells that normally are destined to die. In cancer the result is an excessive growth of cells that invade and destroy normal tissue. Some cancer treatments are based on the strategy of shifting the cell suicide program into higher gear.

Michael Woods

▪ 2002


Prize for Peace
      The 2001 Nobel Prize for Peace was awarded to the United Nations (UN) and to its secretary-general, Kofi Annan. In announcing the prize in its centenary year, the Norwegian Nobel Committee said of the UN, “Today the organization is at the forefront of efforts to achieve peace and security in the world.” Annan, who took office on Jan. 1, 1997, and who in 2001 was elected to a second term, was praised both for carrying out administrative reforms and for promoting the goals of the UN.

      The UN charter came into effect on Oct. 24, 1945, in San Francisco. With its headquarters in New York City, the UN and its agencies and affiliates made up a worldwide organization of more than 50,000 employees involved not only in the settlement of disputes but also in promoting advances in fields such as health, social welfare, and finance. Through the 1980s the UN often was the victim of Cold War politics, particularly between the U.S. and the U.S.S.R. Nonetheless, it sometimes played an important role in armed conflicts, as in the Korean War (1950–53), and served as an important forum in confrontations, as with the Cuban missile crisis of 1962. During the 1990s the UN expanded its role in helping to settle regional wars, particularly in the Balkans, in East Timor, and in parts of Africa. Although this was the first Nobel Prize for Peace awarded to the UN, several of its agencies had received the honour: the Office of the United Nations High Commissioner for Refugees in 1954 and 1981; the United Nations Children's Fund (UNICEF) in 1965; and United Nations peacekeeping forces in 1988. The International Labour Organisation, an affiliated agency, won the prize in 1969.

      Annan was praised by the Nobel Committee as being “pre-eminent in bringing new life” to the UN. He was born on April 18, 1938, in Kumasi, Gold Coast (now Ghana), and was educated largely in Kumasi and in the U.S. He earned a degree in economics from Macalester College, St. Paul, Minn., in 1961 and a master's degree in management from the Massachusetts Institute of Technology in 1972. He began working for the UN in 1962 as a budget officer at the World Health Organization in Geneva and, except for the years 1974–76, made his career with the UN. During the 1990s he was an assistant and then an undersecretary-general, performing duties that included overseeing peacekeeping operations in Bosnia and Herzegovina.

      Annan was elected secretary-general, the first to come from the ranks of the staff, with a mandate to streamline the UN bureaucracy. He also forcefully promoted human rights and programs to combat AIDS and terrorism. He took an active role in negotiations when necessary but also was forthright in criticizing members when he felt it his duty to do so. Annan was the second UN secretary-general to win the Nobel Prize for Peace. Dag Hammarskjöld was awarded the prize posthumously in 1961, after he had died in a plane crash earlier in the year.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2001 to Americans George A. Akerlof, A. Michael Spence, and Joseph E. Stiglitz, whose research and analyses had laid the foundations for the theory of markets with asymmetrical information. Their analysis of markets in which one side had better information than the other was fundamental to modern microeconomic theory and changed economists' perceptions of how markets work. It enabled an understanding of the phenomena in real markets that could not be explained by traditional neoclassical theory. The application of the models was wide ranging—from economic development and labour markets to traditional agricultural and modern financial markets. These models were also used to explain the existence of certain economic and social institutions and the introduction of contracts to limit the negative effect of information asymmetries.

      Akerlof received the Nobel for his exposition on markets with asymmetrical information, in which sellers of a product have more information than buyers about the product's quality. He demonstrated that this could lead to “adverse selection” of poor-quality products such as—in his well-cited example of a secondhand-car market—a defective car known as a “lemon.” In his 1970 seminal work “The Market for Lemons: Quality Uncertainty and the Market Mechanism,” Akerlof explained how private or asymmetrical information prevents markets from functioning efficiently and examined the consequences of this. Akerlof suggested that many economic institutions had emerged in the market in order to protect themselves from the consequences of adverse selection, including secondhand-car dealers who offered guarantees to increase consumer confidence. In the context of less-developed countries, Akerlof's analysis explained that interest rates were often excessive because moneylenders lacked adequate information on the borrower's creditworthiness.

      Spence developed the theory of “signaling” to show how the better informed in the market communicate their information to the less-well-informed to avoid the problems associated with adverse selection. In his 1973 seminal paper “Job Market Signaling,” Spence demonstrated how education was used as a signal in the labour market. While an employer could not observe the productivity of a potential employee, he could assume that the cost of achieving a freely available educational standard—in terms of effort, expense, or time—was less for a productive than an unproductive person. For signaling to work, its cost had to differ widely between the job candidates.

      Stiglitz concentrated on what could be done by ill-informed individuals and operators to improve their position in a market with asymmetrical information. He found that they could extract information indirectly through screening and self-selection. “Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information,” a classic 1976 article on adverse selection written by Stiglitz with Michael Rothschild, examined the insurance market in which the (uninformed) companies lacked information on the individual risk situation of their (informed) customers. The analysis showed that by offering incentives to policyholders to disclose information, insurance companies were able to divide them into different risk classes. The use of a screening process enabled companies to issue a choice of policy contracts in which lower premiums could be exchanged for higher deductibles.

      Akerlof was born on June 17, 1940, in New Haven, Conn., and was educated at Yale University (B.A., 1962) and the Massachusetts Institute of Technology (Ph.D., 1966). In 1966 he joined the faculty of the University of California, Berkeley, where he served as Goldman Professor of Economics from 1980.

      Spence was born in 1943 in Montclair, N.J., and was educated at Princeton University (B.A., 1966), the University of Oxford (B.A., M.A., 1968), and Harvard University (Ph.D., 1972). He taught economics at Harvard and at Stanford University, where in 1990 he became the Philip H. Knight Professor and dean of the Graduate School of Business.

      Stiglitz was born on Feb. 9, 1943, in Gary, Ind., and was educated at Amherst (Mass.) College (B.A., 1964) and the Massachusetts Institute of Technology (Ph.D., 1967), where he began his teaching career in 1966. He later became a professor at Yale, Oxford, Stanford, and Princeton. From 2001 he was professor of economics, business, and international affairs at Columbia University, New York City. Stiglitz was an active member of Pres. Bill Clinton's economic team; a member of the U.S. Council of Economic Advisers (1993–97), of which he became chairman in June 1995; and senior vice president and chief economist of the World Bank (1997–2000).

Janet H. Clark

Prize for Literature
      Trinidadian-born British writer V.S. Naipaul—who merged fiction and reminiscence as well as memoir and reportage to create a compelling oeuvre that reflected his intimate journey through memory and experience toward the realization of self-discovery and truth—was awarded the 2001 Nobel Prize for Literature. The author of more than 25 volumes of fiction, history, travelogue, and journalism, Naipaul was an astute and often condescending observer of a world he perceived to be governed by class consciousness, prejudice, and political injustice. His penetrating, nihilistic vision of contemporary society encompassed both the dark and often brutal realities of colonial imperialism and postcolonial chaos and diaspora. His was an uncompromising voice for the oppressed, disenfranchised, and stateless, who, like himself, migrated from place to place in search of purpose and acceptance in what he deemed “borrowed cultures.”

      A descendant of Hindu immigrants from northern India whose Brahmin grandfather immigrated to the Caribbean as an indentured labourer, Vidiadhar Surajprasad Naipaul was born Aug. 17, 1932, in Chaguanas, Trinidad. His father, affectionately portrayed in the highly acclaimed A House for Mr. Biswas (1961), was a local journalist with literary aspirations of his own and instilled in both Naipaul and his younger brother Shiva, also a celebrated writer, an appreciation for literature and respect for the expressiveness and eloquence of language. Educated in Chaguanas and later in Port of Spain, Naipaul at the age of 18 left Trinidad for Great Britain to continue his studies at University College, Oxford. After graduating with honours in English, he became a freelance journalist with the BBC in London. In 1955 Naipaul married, and in the following year he returned briefly to Trinidad before settling permanently in England, first in London and then in Salisbury, Wiltshire, near Stonehenge.

      Early in his career, Naipaul was identified with the emerging generation of politicized West Indian authors—among them Edgar Mittelhölzer, Samuel Selvon, George Lamming, and Derek Walcott—who sought to create a decolonization of English literature. Naipaul's first published novel, The Mystic Masseur (1957), was awarded the John Llewellyn Rhys Memorial Prize and combined ethnic humour and layered cynicism to create a satiric composite of Trinidadian society. The condition of the marginalized West Indian also informed both his second novel, The Suffrage of Elvira (1958), and Miguel Street (1959), a collection of interrelated stories about life in Port of Spain. Naipaul first gained critical recognition with A House for Mr. Biswas, which reflected the struggle of a modern-day West Indian Everyman forced to endure the humiliation and anguish of servitude and exploitation while desperately searching for both self-preservation and identity.

      In 1962 Naipaul released his first work of nonfiction, The Middle Passage, which provided an acerbic and often insolent assessment of European colonialism in the West Indies and South America. The following year Mr. Stone and the Knights Companion, the first of his novels with an English setting, was published. These were followed by the publication of An Area of Darkness (1964), the first volume in his so-called “India” trilogy, which also includes India: A Wounded Civilization (1977) and India: A Million Mutinies Now (1990). Naipaul broadened his literary perspective of cultural dislocation with The Mimic Men (1967), which was followed by one of his best-known fictional works—the Booker Prize-winning In a Free State (1971), an experimental novel merging several genres to examine the pervasive decay of postcolonial disorder and disillusionment. The destructive and grim reality of postindependence upheaval was further explored in Guerrillas (1975), the first of his works to receive widespread attention in the U.S., and in A Bend in the River (1979). Naipaul continued to delve into the boundaries between fiction and autobiography with The Enigma of Arrival (1987), a personal reflection on the condition of colonialism and the postcolonial experience.

      After being knighted in 1990, Naipaul received the first David Cohen British Literature Prize in 1993 for “lifetime achievement by a living British writer.” He remained productive throughout the 1990s, enhancing his reputation with the publication in 1994 of the meditative novel A Way in the World and the controversial account of Islamic fundamentalism Beyond Belief: Islamic Excursions Among the Converted Peoples (1998). Following the death in 1996 of his first wife, Naipaul remarried that year. In his latest work, Half a Life (2001), Naipaul returned to the themes of his earlier fiction—the postcolonial legacy of displacement and exile.

Steven R. Serafin

Prize for Chemistry
      The syntheses of many important chemicals rely on catalysts, substances that speed up reactions without being consumed themselves. The 2001 Nobel Prize for Chemistry went to three scientists who developed the first chiral catalysts, which drive chemical reactions toward just one of two possible outcomes. Their catalysts found almost immediate use, most significantly in the manufacture of new drugs but also in the production of flavouring agents, insecticides, and other industrial products. One-half of the $943,000 prize was shared by William S. Knowles, formerly of the Monsanto Co., St. Louis, Mo., and Ryoji Noyori of Nagoya (Japan) University. The other half went to K. Barry Sharpless of the Scripps Research Institute, La Jolla, Calif.

      Knowles was born on June 1, 1917, in Taunton, Mass. He received a Ph.D. from Columbia University, New York City, in 1942, after which he conducted research at Monsanto until his retirement in 1986. Noyori was born on Sept. 3, 1938, in Kobe, Japan. He took a Ph.D. from Kyoto University (1967) and in 1968 joined the faculty of Nagoya University. In 2000 he assumed directorship of the university's Research Center for Materials Science. Sharpless was born on April 28, 1941, in Philadelphia. He received a Ph.D. from Stanford University (1968) and, after postdoctoral work, joined the Massachusetts Institute of Technology (MIT) in 1970. In 1990 he became W.M. Keck Professor of Chemistry at Scripps.

      Many molecules are chiral—they exist in two structural forms (enantiomers) that are nonsuperimposable mirror images, like a pair of human hands. In humans and other living things, one chiral form of a molecule often predominates in the biochemical activities inside cells. For instance, natural sugars, which are the building blocks of carbohydrates, are almost exclusively right-handed. Natural amino acids, the building blocks of proteins, are almost all left-handed. Likewise, the receptors, enzymes, and other cellular components made from these molecules are chiral and tend to interact selectively with only one of two enantiomers of a given substance. For many drugs, however, traditional laboratory synthesis results in a mixture of enantiomers. One form usually has the desired effect, binding with a cellular receptor or interacting in some other way. The other form may be inactive or cause undesirable side effects. The latter happened with the drug thalidomide, prescribed to pregnant women for nausea beginning in the late 1950s. One enantiomer relieved nausea, whereas the other caused birth defects.

      Traditional syntheses for thalidomide and other drugs are symmetrical in the sense that they produce equal amounts of both enantiomers. For decades chemists had tried to develop asymmetrical methods that would yield more of one enantiomer or even one enantiomer exclusively. The three Nobel laureates developed asymmetrical catalysts for two important classes of reactions in organic chemistry, hydrogenations and oxidations.

      In the early 1960s scientists did not know if catalytic asymmetrical hydrogenation even was possible. In many important syntheses, hydrogenation involves the addition of hydrogen to two atoms that are joined by a double bond in a molecular structure. An asymmetrical hydrogenation would do so in a way that produced more of one enantiomer than the other. The breakthrough came in 1968 when Knowles, working at Monsanto, developed the first chiral catalyst for an asymmetrical hydrogenation reaction. Knowles was seeking an industrial synthesis for the drug l-dopa, which later became a mainstay for treating Parkinson disease. Variations of the new catalyst found almost immediate application in producing very pure preparations of the desired l-dopa enantiomer.

      Beginning in the 1980s Noyori, working at Nagoya University, developed more general asymmetrical hydrogen catalysts. They had broader applications, could produce larger proportions of the desired enantiomer, and were suitable for large-scale industrial applications. Noyori's catalysts found wide use in the synthesis of antibiotics and advanced materials.

      Sharpless addressed the great need for chiral catalysts for oxidations, another broad family of chemical reactions. Atoms, ions, or molecules that undergo oxidation in reactions lose electrons and, in so doing, increase their functionality, or capacity to form chemical bonds. In 1980, working at MIT, Sharpless carried out key experiments that led to a practical method based on catalytic asymmetrical oxidation for producing epoxide compounds, used in the synthesis of heart medicines such as beta blockers and other products. As was expressed by the Royal Swedish Academy of Sciences, which awarded the chemistry prize, “Many scientists have identified Sharpless' epoxidation as the most important discovery in the field of synthesis during the past few decades.”

Michael Woods

Prize for Physics
      Three scientists who first created a new ultracold state of matter that Albert Einstein had predicted more than 70 years earlier won the 2001 Nobel Prize for Physics. Eric A. Cornell of the U.S. National Institute of Standards and Technology (NIST), Carl E. Wieman of the University of Colorado at Boulder, and Wolfgang Ketterle of the Massachusetts Institute of Technology (MIT) shared the $943,000 prize for their production in 1995 of the so-called Bose-Einstein condensate (BEC).

      Cornell was born on Dec. 19, 1961, in Palo Alto., Calif. He earned a Ph.D. from MIT (1990) and, after postdoctoral work, joined the faculty of the University of Colorado in 1992. That same year he became a staff scientist at NIST. Wieman was born on March 26, 1951, in Corvallis, Ore. After earning a Ph.D. from Stanford University (1977), he taught and conducted research at the University of Michigan at Ann Arbor until 1984, when he moved to the University of Colorado. Both Cornell and Wieman held positions as fellows of the Joint Institute for Laboratory Astrophysics (JILA), a research and teaching centre operated by NIST and the University of Colorado. Ketterle was born on Oct. 21, 1957, in Heidelberg, Ger. He received a Ph.D. from the University of Munich and the Max Planck Institute for Quantum Optics, Garching (1986). After postdoctoral work he joined the faculty at MIT in 1993. He also served as a principal investigator with the Center for Ultracold Atoms, a joint research institution sponsored by MIT, Harvard University, and the National Science Foundation. Ketterle was a German citizen with permanent residency in the U.S.

      Generations of physicists had dreamed of creating a BEC since the concept for this exotic state of matter first emerged in the 1920s. In 1924 the Indian physicist Satyendra Bose made important theoretical calculations about the nature of light particles, or photons. Physicists already had recognized that the propagation of light can be thought to consist of discrete packets of energy traveling through space. Bose presented an alternative derivation of a law about the behaviour of photons developed earlier by the German physicist Max Planck. The kinds of particles that fitted Bose's description eventually were named bosons in his honour. Bosons have a property that allows them to congregate without number, occupying the same quantum state at the same time.

      Einstein translated Bose's work into German, submitted it to a physics journal, and started working on the concept himself. Bose's work focused on particles, such as photons, that have no rest mass. Einstein extended it to particles with mass, such as the atoms in a dilute gas. He predicted that if a sufficient number of such atoms get close enough together and move slowly enough, they will undergo a phase transition into a new state. That new state of matter became known as a Bose-Einstein condensate.

      Physicists recognized the keys to achieving a BEC. The major challenge was to make the gas very cold, about a tenth of a millionth of a degree of absolute zero (−273.15 °C, or −459.67 °F), to slow the motion of the atoms without causing them to condense to a liquid. Atoms in gases usually move in an uncoordinated way, ricocheting off each other and nearby objects. Under the conditions described by Einstein, however, the atoms “sense” one another and transform from a mass of uncoordinated individuals to a coherent group that acts like a single giant atom.

      Cornell and Wieman, working at the University of Colorado in 1995, used a combination of laser and magnetic techniques to slow, trap, and cool about 2,000 rubidium atoms to form a BEC. Ketterle, working independently at MIT, created a BEC from sodium atoms. Ketterle's BEC, which comprised a much larger sample of atoms, was used to carry out additional studies of the condensate, including an interference experiment that provided the first direct evidence of the coherent nature of a BEC. Those first successes led to a flurry of experiments in which physicists expanded the roster of BEC-forming gases and used BECs to produce “atom lasers” that emit coherent beams of matter rather than light.

      In 2001 about 20 groups were conducting BEC experiments, which were providing new insights into the laws of physics and pointing to possible practical uses of BECs. (See Physics. (Mathematics and Physical Sciences )) As the Swedish Academy observed, “Revolutionary applications of BEC in lithography, nanotechnology, and holography appear to be just round the corner.”

Michael Woods

Prize for Physiology or Medicine
      Three researchers shared the 2001 Nobel Prize for Physiology or Medicine for their pioneering discoveries about one of life's most basic processes. Working independently, Leland H. Hartwell of the Fred Hutchinson Cancer Research Center, Seattle, Wash., and Paul M. Nurse and R. Timothy Hunt of the Imperial Cancer Research Fund (ICRF), London, illuminated the common mechanisms that regulate the cycle of growth and division in cells ranging from yeast to human beings. As was acknowledged by the Nobel Assembly at the Karolinska Institute in Stockholm, which awarded the $943,000 medicine prize, these findings greatly expanded scientific understanding of cancer and other diseases that occur when the machinery of the cell cycle goes awry.

      Hartwell was born on Oct. 30, 1939, in Los Angeles. After earning a Ph.D. from the Massachusetts Institute of Technology (1964), he served on the faculty of the University of California, Irvine, from 1965 until 1968, when he moved to the University of Washington. In 1997 he assumed the duties of president and director of the Hutchinson Center. Nurse was born on Jan. 25, 1949, in Great Britain. He received a Ph.D. from the University of East Anglia, Norwich, Eng. (1973), later headed the ICRF Cell Cycle Laboratory (1984–87), and served on the faculty of the University of Oxford (1987–93). In 1996 he became director general of the ICRF and, once again, head of its Cell Cycle Laboratory. Hunt, born on Feb. 19, 1943, in Great Britain, earned a Ph.D. from the University of Cambridge (1968) and later served on its faculty (1981–90). In 1990 he joined the ICRF, rising to principal scientist.

      The cell cycle comprises a carefully orchestrated series of events that unfolds countless times each day in the human body. An adult human has about 100 trillion cells, all of which originate from the division of a single fertilized egg cell. Even after a human is fully grown, cells continue to divide to replace those that die. In the first phase of the cell cycle, the cell enlarges. On reaching a certain size, it enters the second phase, in which DNA synthesis occurs—the cell duplicates its genetic material and creates a copy of each chromosome. In the next phase, the cell checks to ensure that DNA replication is accurate and prepares for cell division. In the fourth phase, the chromosomes separate into two sets, and the cell divides into two daughter cells, each with one set of chromosomes. The daughter cells then return to the first phase of the cell cycle.

      The phases of the cycle must be coordinated with great precision. Each must occur in its proper order and be completed before the next phase begins. Errors in this orchestration may lead to chromosomal abnormalities—for example, chromosomes that have missing or rearranged parts or that are distributed unevenly between the daughter cells. Such abnormalities often occur in cancer cells, which have escaped the normal controls on the cell cycle and multiply in unrestrained fashion. The three Nobel laureates discovered key molecular regulators of the cell cycle, including proteins called cyclins and enzymes called cyclin-dependent kinases.

      Hartwell started work in the late 1960s, using baker's yeast as a model organism to study the cell cycle with genetic methods. He identified more than 100 genes, termed cell-division-cycle (CDC) genes, involved in cell-cycle control. For instance, one—named cdc28—controls the first phase and so became known as “start.” Hartwell also found that the cycle includes optional pauses, called checkpoints, that allow time for repair of damaged DNA.

      Nurse used another type of yeast as his model organism. In the mid-1970s he discovered a gene called cdc2, which works as a master switch to regulate the timing of different cell-cycle events. In 1987 Nurse isolated the corresponding gene in humans, which was named cyclin-dependent kinase 1 (cdk1). The gene codes for a protein that belongs to a family of key enzymes, the cyclin-dependent kinases (CDKs), that participate in many cell functions. About a half dozen other CDKs were identified in humans.

      Hunt isolated the first cyclin in the early 1980s from sea urchins. Cyclins are proteins formed and broken down during each cell cycle. Hunt discovered that cyclin binds to the CDK molecules discovered by Nurse, functioning as a biochemical enabling agent to activate the CDKs. Hunt also showed that the periodic degradation of cyclin is an important general regulatory mechanism in the cell cycle. By 2001 about 10 cyclins had been identified.

Michael Woods

▪ 2001


Prize for Peace
      The 2000 Nobel Prize for Peace was awarded to South Korean Pres. Kim Dae Jung, who had spent much of his life in a struggle to transform his homeland. In making the announcement, the Norwegian Nobel Committee cited his contributions to “democracy and human rights in South Korea and in East Asia in general, and for peace and reconciliation with North Korea in particular.” For decades Kim had fought for a more democratic government in South Korea, and he made improved relations with the North a principal goal of his administration. As president he instituted a “sunshine” policy that allowed South Koreans to visit relatives in the North, and he also eased the rules on investment by South Koreans there. In 1998 direct talks between the two countries resumed for the first time in four years, and in June 2000 Kim accepted an invitation to Pyongyang, the capital of North Korea, to meet his counterpart, Kim Jong Il. It was the first meeting between the leaders of the two countries, still technically at war, since the Korean War of 1950–53.

      Kim was born on Dec. 3, 1925, in Mokp'o, S.Kor. He graduated from the Mokp'o School of Commerce in 1943 and then worked for a Japanese-owned company and also briefly published a newspaper. He was captured by communist forces in the Korean War but escaped. An advocate of a Western-style pluralistic democracy, he opposed the one-party rule of Pres. Syngman Rhee during the 1950s. In 1961 he won the first of six terms in the National Assembly, and during the decade he became an outspoken critic of the harsh regime of Pres. Park Chung Hee. In 1970 Kim became head of the Korean Democratic Party, and in 1971 he ran unsuccessfully against Park in the presidential election. The Korean Central Intelligence Agency abducted him from a hotel in Tokyo in 1973, and he was spared death only through pressure from Japan and the U.S. He spent much of the following decade under arrest and in prison, at times under sentence of death, until in 1982 he was allowed to go in exile to the U.S. for medical treatment. Kim returned to South Korea in 1985 and ran again for president in 1987 and 1992. In 1995 he founded the National Congress for New Politics, and in 1997 he won election as president of South Korea, the first opposition candidate ever to do so.

      Kim, a devout Roman Catholic, had spent half a century as a dissident in South Korea, supporting democratic values and improved relations with the North even when his views put him in mortal danger. For his patience and persistence and for his lack of recrimination against those at whose hands he had suffered, he was sometimes compared to South African apartheid foe Nelson Mandela. The change in relationship toward the North, for which Kim had often been ridiculed, seemed to bear fruit. Following his meeting with Kim Jong Il, head of what was sometimes called the world's last Stalinist state, the two countries marched together in the ceremonies of the 2000 Summer Olympic Games, arranged further visits between separated families, and agreed to restore severed rail links. Further, in October U.S. Secretary of State Madeleine K. Albright made a trip to Pyongyang. Thus, Kim's policy appeared to be defusing one of the tensest and most dangerous situations in the world.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences was awarded in 2000 to James J. Heckman and Daniel L. McFadden, two Americans who developed theories and methods that resolved some of the problems associated with the analysis of microdata. Their contributions to econometrics (the application of mathematical and statistical techniques to economic problems) and microeconomics (the interface between economics and statistics) provided essential tools for economists and other social scientists.

      Heckman received the Nobel award for his “development of theory and methods for analyzing selective samples.” He found a solution to a major problem encountered in microeconomic studies; e.g., a sample—in which all members shared a common characteristic or attribute—might not represent the underlying population because of rules governing data collection. Selection problems can arise, for example, when a government study of the relationship between wages and working hours relies on observable data while ignoring other factors, including individual choice. Heckman, who had a reputation as the world's leading researcher on the microevaluation of labour-market programs, devised various methods to deal with such sample-selection problems. The best known of these was the Heckman correction (known as Heckit method or Heckman lamda), which consisted of a simple and easily applied two-stage method. In order to gauge the relationship between wages and working hours by using observable data, Heckman proposed that a model based on economic theory be formulated to establish the probability of working. The result generated by this model could then be used to predict the probability for each individual. This would be treated as an additional variable in stage two, when the probability was factored into the calculation.

      McFadden, working in a related area, received the Nobel award for his “development of theory and methods for analyzing discrete choice.” Much of his work was done in the 1970s, and his seminal contribution to conditional logit analysis came in 1974. Previously, the value of microdata in empirical studies was often undermined because the data reflected a limited number of alternatives upon which individual choices were made in, for example, buying a house or selecting a mode of travel to work. In traditional demand analysis only a continuous (or measurable) variable could be used to represent individual choice, which made it inappropriate for studying discrete-choice behaviour. McFadden developed statistical methods that could easily be applied to the needs of society. His econometric discrete-choice analysis became an essential component in studying individual-choice behaviour. McFadden's models were applied to studies of labour-force participation, public transport systems, health care, housing (for the elderly in particular), and the environment and thereby enabled a greater understanding of the human choices that could influence the success or failure of public-policy decisions.

      Heckman was born April 19, 1944, in Chicago and was educated at Colorado College (B.A. 1965) and Princeton University (M.A. 1968, Ph.D. 197l). He joined the faculty of the University of Chicago, where he was an associate professor (1973–77) and professor (from 1977) of economics. In 1989 he received an honorary M.A. from Yale University, where he served as professor of both economics (1988–90) and statistics (1990). He also acted as a research associate at the U.S. National Bureau of Economic Research (1971–85 and from 1987) and held associate editorships of the Journal of Econometrics (1977–83), the Journal of Labor Economics (from 1982), and The Review of Economics and Statistics (from 1994). Heckman was awarded the John Bates Clark medal by the American Economics Association in 1983.

      McFadden was born on July 29, 1937, in Raleigh, N.C., and was educated at the University of Minnesota at Minneapolis (B.S. 1957, Ph.D. 1962). He taught economics (1963–79) at the University of California, Berkeley, where he became professor of economics in 1968. From 1978 he was on the faculty at the Massachusetts Institute of Technology, where he also held (1984–91) the James R. Killian Chair and was director (1986–88) of the Statistics Center. In 1990 McFadden returned to Berkeley and held several prestigious positions, including the E. Morris Cox Chair. That same year he was also the Sherman Fairchild Distinguished Scholar while a visiting professor at the California Institute of Technology, Pasadena. He was editor of the Journal of Statistical Physics (1968–70) and the Econometric Society monographs (1980–83) and was on the editorial boards of several academic journals.

Janet H. Clark

Prize for Literature
      Chinese émigré writer Gao Xingjian was awarded the 2000 Nobel Prize for Literature for “an oeuvre of universal validity, bitter insights and linguistic ingenuity, which has opened new paths for the Chinese novel and drama.” Gao, the first Chinese-language writer to win the award, was a respected novelist, playwright, translator, and critic whose works had been banned in his native country since the late 1980s. He was also renowned both as a stage director and as an artist. Subjected to persistent harassment from government authorities, Gao left China in 1987 and settled in France as a political refugee. He became a French citizen and took up residence in the Paris suburb of Bagnolet.

      Gao was born on Jan. 4, 1940, in Ganzhou, Jiangxi province. He was educated in state schools and from 1957 to 1962 attended the Beijing Foreign Languages Institute, where he earned a degree in French. Persecuted as an intellectual during the repression of the Cultural Revolution (1966–76), Gao was forced to destroy his early writings and was later sent to a reeducation camp, enduring nearly six years of hard labour. Afterward, Gao was assigned by the government to work at the Foreign Languages Press. He then became a translator in the Chinese Writers Association, but he was unable to publish his work or travel abroad until 1979.

      Gao emerged in the early 1980s as an innovative and provocative voice in contemporary Chinese literature. He first gained critical recognition with the publication in 1980 of the novella Hanye zhong de xingchen (“Stars on a Cold Night”). This was followed by the controversial literary study Xiandai xiaoshuo jiqiao chutan (1981; “A Preliminary Discussion of the Art of Modern Fiction”).

      In 1981 Gao became a resident playwright with the Beijing People's Art Theater, and in 1982 he saw the premiere of his first play, Juedui xinhao (Alarm Signal, 1996), written in collaboration with Liu Huiyuan and published in Gao Xingjian xiju ji (1985; “Collected Dramatic Works of Gao Xingjian”). Merging elements of traditional Chinese opera and drama with the influence of Western modernism, Gao created a body of work that earned praise and acclaim as well as disapproval and censure. His second and most celebrated play, Chezhan (1983; The Bus Stop, 1996, also translated as Bus Stop, 1998), incorporated various techniques of avant-garde European theatre. It premiered in June 1983 and was openly condemned as “intellectual pollution” by Communist Party officials. Gao continued to explore the boundaries of experimental drama with plays such as Yeren (1985; Wild Man, 1990), Dubai (1985; “Soliloquy”), and most notably Bi'an (1986; The Other Side, 1997, also translated as The Other Shore, 1999). Deemed counterrevolutionary by authorities, the play was stopped after 10 performances, and Gao was placed under surveillance. In part to avoid further reprisal, Gao embarked on a 10-month walking tour of the forest and mountain regions of Sichuan province, following the course of the Chang Jiang (Yangtze River). For Gao the journey was both a spiritual and an artistic pilgrimage that became the basis for his first novel, Lingshan (1989; Soul Mountain, 2000), a masterful tour de force. He later produced another novel, Yige ren de shengjing (1999; to be published in 2001 as One Man's Bible).

      Gao, who wrote in both French and Chinese, was the recipient in 1992 of the title of Chevalier of the Order of Arts and Letters by the French Ministry of Culture. Following the publication of his play Taowang (1989; Fugitives, 1993), set against the backdrop of the brutal suppression in 1989 of student demonstrations in Tiananmen Square, Gao was declared persona non grata by the Chinese regime, and his works were banned. Other plays included Sheng si jie (1991; Between Life and Death), Duihua yu fanjie (1992; Dialogue and Rebuttal), Yeyou shen (1993; Nocturnal Wanderer), and Zhoumo sichongzou (1995; Weekend Quartet), translated by Gilbert C.F. Fung and collected in The Other Shore: Plays by Gao Xingjian (1999).

      As cited by the Swedish Academy, “In the writing of Gao Xingjian literature is born anew from the struggle of the individual to survive the history of the masses. He is a perspicacious skeptic who makes no claim to be able to explain the world.” In search of meaning through personal expression, Gao asserted that only as a writer and as an artist had he found reaffirmation of his own existence.

Steven R. Serafin

Prize for Chemistry
      It was once common knowledge that plastics—polymeric materials that can be molded or shaped—are fundamentally different from metals in their properties. Plastics, for example, are used around the copper wires in power cords because their insulating characteristics protect people from electric shocks and equipment from short circuits. In the 1970s the three scientists who shared the 2000 Nobel Prize for Chemistry turned that idea upside down. Alan G. MacDiarmid of the University of Pennsylvania, Hideki Shirakawa of the University of Tsukuba, Japan, and Alan J. Heeger of the University of California, Santa Barbara (UCSB), showed that certain plastics can be chemically modified to conduct electricity almost as readily as metals.

      The discovery of electrically conductive polymers provided insights into the nature of polymers and electrical conductivity and opened up new fields of chemical and physical research. The materials, which are light in weight and can be fabricated as films, found practical applications as well. By the end of the 20th century, conductive polymers were used in, or were being developed for, corrosion inhibitors, antistatic coatings on photographic film, “smart” windows that automatically darkened in strong sunlight to keep buildings cool, light-emitting diodes, flexible solar cells, displays for mobile telephones and other small electronic devices, and thin wall-sized, roll-up computer displays.

      MacDiarmid was born April 14, 1927, in Masterton, N.Z. He earned Ph.D.'s in chemistry from the University of Wisconsin at Madison in 1953 and the University of Cambridge in 1955. He then joined the faculty of the University of Pennsylvania, becoming full professor in 1964 and Blanchard Professor of Chemistry in 1988. Shirakawa was born Aug. 20, 1936, in Tokyo. He earned a Ph.D. from the Tokyo Institute of Technology in 1966. That same year he joined the faculty of the Institute of Materials Science at the University of Tsukuba, where he became professor of chemistry in 1982. Heeger was born Jan. 22, 1936, in Sioux City, Iowa. After receiving a Ph.D. in physics from the University of California, Berkeley, in 1961, he taught and conducted research at the University of Pennsylvania until 1982, when he became professor at UCSB and director of its Institute for Polymers and Organic Solids. In 1990 Heeger founded the UNIAX Corp. to develop and manufacture light-emitting displays based on conducting polymers.

      Heeger, MacDiarmid, and Shirakawa carried out their prizewinning work while studying polyacetylene, a polymer that was known to exist as a black powder. In 1974, at the University of Tsukuba, Shirakawa and associates serendipitously synthesized polyacetylene in the form of a silvery film. Although the material had a distinct metallic appearance, it still behaved as an insulator. The following year Shirakawa discussed his discovery with MacDiarmid during the latter's visit to Japan. In 1977 the two men and Heeger, collaborating at the University of Pennsylvania, exposed polyacetylene to iodine vapour. Their strategy was to introduce impurities into the polymer much as in the doping process used to tailor the conductive properties of semiconductors. Doping with iodine increased polyacetylene's electrical conductivity by a factor of 10 million, which made it as conductive as some metals.

      Scientists later discovered other conductive polymers, including some that emit light when electrically stimulated, and established the key properties of the group. Polymers consist of molecules—acetylene molecules (HC≡CH) in the case of polyacetylene—linked together into long chains. To be conductive, a polymer must have so-called conjugated double bonds along its carbon-atom backbone. Conjugation means that the bonds between carbon atoms alternate, with one single bond followed by one double bond (−C=C−C=C−). In addition, the material must contain charge carriers in the form of extra electrons or of locations that lack an electron (called holes). The impurity atoms, or dopants, in the conductive polymer provide the electrons or holes. When an electric current is applied to the polymer, it can flow either by movement of the negatively charged electrons or by migration of the holes, which behave as positively charged particles.

      Scientists looked forward to the future application of conductive polymers in the emerging field of molecular electronics, where the materials could give rise to a new generation of plastic electronic devices. “In the future, we will be able to produce transistors and other electronic components consisting of individual molecules—which will dramatically increase the speed and reduce the size of our computers,” stated the Royal Swedish Academy of Sciences, which awarded the chemistry prize. “A computer corresponding to what we now carry around in our bags would suddenly fit inside a watch.”

Michael Woods

Prize for Physics
      Three scientists whose pioneering work laid the foundations for the modern era of silicon microchips, computers, and information technology won the 2000 Nobel Prize for Physics. The Royal Swedish Academy of Sciences awarded half of the prize jointly to Herbert Kroemer of the University of California, Santa Barbara (UCSB), and Zhores Alferov (Zhores Ivanovich Alfyorov) of the A.F. Ioffe Physico-Technical Institute, St. Petersburg. The other half went to Jack S. Kilby of Texas Instruments Inc., Dallas, Texas.

      “Two simple but fundamental requirements are put on a modern information system,” stated the Swedish Academy in its award announcement. “It must be fast, so that large volumes of information can be transferred in a short time. The user's apparatus must be small so that there is room for it in offices, homes, briefcases or pockets.” Kroemer, Alferov, and Kilby invented the technology to meet those requirements, the Academy asserted.

      Kroemer was born Aug. 25, 1928, in Weimar, Ger., and received a Ph.D. in theoretical physics in 1952 from Georg August University of Göttingen, Ger. His early employment included stints at RCA Laboratories, Princeton, N.J. (1954–57), and Varian Associates, Palo Alto, Calif. (1959–66), where he did much of his prizewinning work. In 1968 Kroemer became professor of electrical engineering at the University of Colorado at Boulder, and he moved to UCSB in 1976. Alferov was born March 15, 1930, in Vitebsk in the Soviet republic of Belorussia (now Belarus). He received a doctorate in physics and mathematics in 1970 from the A.F. Ioffe Physico-Technical Institute, with which he had been associated since 1953. Alferov became director of the institute in 1987.

      Kroemer and Alferov were cited for their work in the 1950s and '60s to develop fast optoelectronic and microelectronic components made from semiconductor heterostructures. Most computer chips and other semiconductor components are made from one kind of material, such as silicon, that has been chemically modified, or doped, to change its electronic characteristics. As the term suggests, heterostructure semiconductors are made of layers of different materials, such as gallium arsenide and aluminum gallium arsenide.

      In 1957, while working at RCA, Kroemer carried out theoretical calculations showing that a heterostructure transistor would be superior to a conventional transistor, especially for certain high-frequency uses and other applications. Scientists later showed that he was correct—heterostructure transistors can operate at frequencies 100 times higher than the best conventional transistors, and they also work better as amplifiers. Alferov's research team in the Soviet Union applied Kroemer's theory, developing the first practical heterostructure electronic device in 1966 and then pioneering electronic components made from heterostructures. One of them was the first heterostructure laser, which both Kroemer and Alferov had proposed independently in 1963. This invention led to a technological breakthrough by the end of the decade—heterostructure solid-state lasers that could operate continuously at room temperature. These lasers made fibre-optic communication possible.

      The Nobel citation emphasized the many uses of heterostructure devices in everyday life. Laser diodes in compact disc audio and video players and CD-ROM computer drives, for instance, relied on semiconductor heterostructures. Heterostructure devices also were used in communications satellites, cellular telephone communications, bar code readers, and light-emitting diodes used in auto brake lights, control-panel indicators, and other products.

      Kilby was born Nov. 8, 1923, in Jefferson City, Mo. In 1950, while working as a circuit designer, he earned a master's degree in electrical engineering from the University of Wisconsin at Madison. In 1958 he joined Texas Instruments, where he remained until 1970, when he took a leave of absence to pursue independent research. From 1978 to 1984 he was distinguished professor of electrical engineering at Texas A&M University at College Station.

      Kilby received his half of the physics prize for his role in inventing the integrated circuit, or microchip. A microchip is a tiny sliver of semiconductor, typically silicon, that contains thousands or millions of microscopic transistors, resistors, and other electronic components. All are designed to work in an integrated fashion as amplifiers, computer processors and memories, and other components that underpin the microelectronics revolution.

      When Kilby began his prizewinning work, the conventional transistor already was the limiting factor in computer advances. Transistors, invented in 1947, were in many ways superior to vacuum tubes, but thousands had to be soldered together with resistors, capacitors, and other discrete components on printed circuit boards. By the early 1950s scientists were discussing a solution to this complexity—manufacturing all the circuit components as a single package.

      As a new employee at Texas Instruments in 1958, Kilby had earned no vacation and spent the summer working almost alone in the laboratory. During that period he demonstrated that it was possible to fabricate all the different components of a circuit from silicon. The next year Kilby filed a patent for his idea of miniaturized electronic circuits. As the Swedish Academy pointed out, another young engineer, Robert Noyce, then of Fairchild Semiconductor Corp., also had demonstrated the practical possibility of an integrated circuit at about the same time. Kilby, however, was first with a patent application. Kilby later coinvented the pocket calculator, the first common use of an integrated circuit.

Michael Woods

Prize for Physiology or Medicine
      The 2000 Nobel Prize for Physiology or Medicine was awarded to Arvid Carlsson of Göteborg (Swed.) University, Paul Greengard of Rockefeller University, New York City, and Eric Kandel of Columbia University, New York City. Their seminal investigations clarified the way in which brain cells transmit signals to each other both in healthy people and in individuals with common neurological and mental illnesses. As was noted by the Nobel Assembly at the Karolinska Institute in Stockholm, which awarded the medicine prizes, these findings resulted in the development of new drugs for Parkinson disease and other disorders.

      Carlsson was born Jan. 25, 1923, in Uppsala, Swed. He received his medical degree in 1951 from the University of Lund, Swed., where he subsequently held teaching positions. In 1959 he became professor of pharmacology at Göteborg University. Greengard, born Dec. 11, 1925, in New York City, received a Ph.D. in 1953 from Johns Hopkins University, Baltimore, Md. Following postgraduate work, he was employed with Geigy Research Laboratories, Ardsley, N.Y. (1959–67), and held professorships at Albert Einstein College of Medicine, New York City (1961–70), and Yale University (1968–83). In 1983 he became professor and head of the Laboratory of Molecular and Cellular Neuroscience at Rockefeller University. Kandel, born Nov. 7, 1929, in Vienna, received his medical degree in 1956 from New York University's School of Medicine. Following residency in psychiatry and employment at Harvard University, he served as associate professor at New York University (1965–74). Beginning in 1974 Kandel held a series of professorships at Columbia University, where he also directed its Center for Neurobiology and Behavior until 1983.

      In the human brain more than 100 billion nerve cells, or neurons, exchange chemical signals at synapses—points where two cells make contact—in a process called synaptic transmission. Neurons transmit their signals via chemical compounds, neurotransmitters, that travel across the synapse. The neurotransmitter delivers the signal by contacting receptor sites on the surface of the receiving cell. The receiving cell then must change the exterior signal into an internal message to which it can respond. The process of converting exterior signals into internal action is termed signal transduction.

      In the late 1950s Carlsson carried out pioneering studies establishing that the molecule dopamine is an important neurotransmitter in the brain. Scientists previously had thought that dopamine worked only indirectly, by causing brain cells to make another neurotransmitter, noradrenaline. Using a sensitive test for dopamine that he devised, Carlsson detected particularly high levels of the compound in areas of the brain that controlled walking and other voluntary movements. In animal experiments he showed that depletion of dopamine impairs the ability to move. When Carlsson treated dopamine-depleted animals with l-dopa, which the brain uses to make dopamine, the symptoms disappeared, and the animals moved normally again.

      Carlsson and others recognized that the animal symptoms were similar to those in Parkinson disease patients. As a result, l-dopa was employed as a treatment for Parkinson disease, eventually becoming the single most important medication for the disease. Carlsson's work also contributed to an understanding of the relationship between neurotransmitters and mental states such as clinical depression, which led to the introduction of new antidepressant drugs, including Prozac.

      The Nobel Assembly honoured Greengard for having discovered how dopamine and other neurotransmitters work in the nervous system. When he began his prizewinning work in the late 1960s, scientists recognized dopamine, noradrenaline, and serotonin as key neurotransmitters in a signaling process called slow synaptic transmission. Greengard showed that slow synaptic transmission involves a chemical reaction called protein phosphorylation. In that reaction a phosphate molecule is linked to a protein, changing the protein's function. Greengard worked out the signal-transduction pathway that begins with dopamine. When dopamine attaches to receptors in a neuron's outer membrane, it causes a rise in a second messenger, cyclic AMP. This molecule, in turn, activates an enzyme that adds phosphate molecules to other proteins in the neuron. Protein phosphorylation can affect the neuron in different ways, including its sensitivity to being triggered to fire off nerve signals.

      Kandel's award-winning research revealed the role of synaptic transmission in learning and memory. He used a simple experimental model, the sea slug Aplysia, which has only about 20,000 nerve cells, many of them very large and easy to study. The sea slug also has a protective reflex to guard its gills, which Kandel used to study basic learning mechanisms.

      The sea-slug experiments—combined with later research in mice—established that, in the words of the Nobel Assembly, “our memory can be said to be ‘located in the synapses' and changes in synaptic function are central, when different types of memories are formed.” Kandel showed that weak stimuli give rise to certain chemical changes in synapses; these changes are the basis for short-term memory, which lasts minutes to hours. Stronger stimuli cause different synaptic changes, which result in a form of long-term memory that can remain for weeks.

Michael Woods

▪ 2000


Prize for Peace
      The 1999 Nobel Prize for Peace was awarded to Doctors Without Borders (in French, Médecins sans Frontières), a privately funded, independent humanitarian organization based in Paris. The group was dedicated to relieving the suffering of those who were victims of political violence or of natural disasters or who needed other medical or health-related assistance. In announcing the award, the Nobel committee said that the group “adhered to the fundamental principle that all disaster victims, whether the disaster is natural or human in origin, have a right to professional assistance given as quickly and as efficiently as possible.” Because of the dangerous circumstances under which they often worked, the members of the organization sometimes put themselves at considerable personal risk.

      Doctors Without Borders was founded in 1971 by 10 French physicians who were dissatisfied with the neutrality of the Red Cross. Having worked in Biafra (a breakaway state of Nigeria) and East Pakistan (now Bangladesh), the doctors believed that they had the right to take the initiative in intervening wherever they saw a need for their services, rather than waiting for an invitation from the government. They also believed that they had a duty to speak out about injustice, even though this might offend the host government. According to the Nobel committee, “National boundaries and political circumstances or sympathies must have no influence on who is to receive humanitarian help. By maintaining a high degree of independence, the organization has succeeded in living up to these ideals.” Doctors Without Borders had, in fact, been expelled from individual countries because of its outspoken criticism of governments' actions and policies. This happened, for example, in 1995 in Zaire and Tanzania after the group charged that refugee camps in those countries were under the control of Hutu officials who had earlier been responsible for genocide in Rwanda.

      In the first major undertaking following its formation, Doctors Without Borders helped victims of an earthquake in Nicaragua in 1972. Other major relief missions were undertaken to care for victims of fighting in Lebanon (1976), treat casualties of war in Afghanistan (1979), give medical assistance following an earthquake in the then Soviet republic of Armenia (1988), and aid victims of fighting in the Russian republic of Chechnya (1995). There were a number of major efforts in the 1980s and 1990s in such African countries as Somalia, Ethiopia, The Sudan, Sierra Leone, Burundi, Rwanda, Kenya, and Zaire, where Doctors Without Borders worked to relieve famine, offer medical care to casualties of war, and deal with the problems of refugees. In 1989, as governments began to collapse, the organization established health programs in a number of countries in Eastern Europe, and in 1991 it aided Kurdish refugees in Iraq, Turkey, and Iran. In 1996 a vaccination program was undertaken against meningitis in Nigeria. The organization also undertook projects such as family-planning services in Armenia and care for homeless people in Russia.

      Although by the late 1990s a quarter of those serving in Doctors Without Borders continued to be French, in all some 45 nationalities were represented, and the group was sending more than 2,000 volunteers to 80 countries annually. The doctors and other medical professionals working for the organization received a small monthly stipend. Although widely regarded for its work, Doctors Without Borders also had come to have a reputation for being a highly politicized group that was particularly skillful in achieving publicity for its efforts. It was also often cited as a model for the type of humanitarian organizations that developed worldwide beginning in the 1970s. The Nobel citation stated, “In critical situations marked by violence and brutality, the humanitarian world of Doctors Without Borders enables the organization to create openings for contacts between the opposed parties. At the same time, each fearless and self-sacrificing helper shows each victim a human face, stands for respect for that person's dignity, and is a source of hope for peace and reconciliation.” The Nobel Prize for Peace was first given in 1901, and this was the 19th time that an organization rather than an individual had received the honour. Other groups to have won the Peace Prize included the Red Cross, Amnesty International, and, only two years previously, in 1997, the International Campaign to Ban Landmines.

Robert Rauch

Prize for Economics
      The Nobel Memorial Prize in Economic Sciences bestows on its recipients international recognition for research that may or may not have been widely acknowledged in the past. Canadian-born Robert Alexander Mundell, who won the 1999 award for his work on monetary dynamics and optimum currency areas, already had a worldwide reputation in the field of international monetary economics. His research—into the effects of government policy in international capital markets, whether the value of a national currency should be fixed (hold one steady exchange rate) or should float (be continuously adjusted), and the desirability of a national currency—had changed the direction of macroeconomic theory for open economies and was the inspiration for much international research in the area.

      Mundell's macroeconomic analysis of exchange rates and their effect on monetary policies dated back to the early 1960s, when he worked (1961–63) in the research department of the International Monetary Fund. In 1961 he put forward the theory that a single currency would be viable in an economic region, or optimum currency area, in which there was free movement of labour and trade. Among other things, a single currency offered the advantage of lower transaction costs in trade and greater certainty about relative prices. A major disadvantage of a single currency for more than one country was maintaining employment or wages in a particular area where, for example, there was a fall in demand. Mundell's initial research focused on whether Canada's currency should be fixed to, or floated against, the U.S. dollar. At a time when it was deemed important for countries to have their own currencies and most had fixed exchange rates, Mundell's research was considered unorthodox. He was the first economist to study the effect of a floating of exchange rates in response to market forces. Previously, models based on the domestic economy influenced economists, particularly Americans, because of the size of the U.S. home market. By introducing foreign trade and capital movements into earlier closed economy models, Mundell showed that it was the extent of international capital mobility that influenced stabilization policies. He concluded that a country's rate of exchange was determined in capital markets by the willingness and desire of people to possess he currency of that country. This in turn was determined by their perception of national economic prospects, inflation, and monetary policies.

      More than 30 years after their introduction, the application of Mundell's theories made them extremely topical and relevant. They were widely seen as having paved the way for the creation of the euro, the single currency adopted by 11 of the 15 members of the European Union on Jan. 1, 1999. The introduction of the euro remained controversial partly because factors were not sufficiently mobile for Europe to conform to Mundell's definition of an optimum currency area. Nevertheless, in the 1990s many companies and nation-states saw globalization as a key factor in determining their economic survival and competitiveness, and exchange-rate uncertainty was perceived by some as a barrier to this. Mundell demonstrated that monetary policy—by which central banks control a country's money supply—has only a limited impact on economies with fixed exchange rates (where the central bank has no power to intervene in the currency market). Nevertheless, it is the best way to stimulate economies with floating exchange rates that allow free capital movements across borders.

      Mundell was born in Kingston, Ont., on Oct. 24, 1932, and was educated at the University of British Columbia (B.A., 1953), the University of Washington (M.A., 1954), the London School of Economics, and the Massachusetts Institute of Technology (Ph.D., 1956). He was a postdoctoral fellow in political economy at the University of Chicago (1956–57), where he later served as a professor of economics (1966–71) and as an editor of the Journal of Political Economy. Other academic appointments included a summer professorship at the Graduate Institute of International Studies in Geneva (1965–75). From 1974 he taught at Columbia University, New York City. Mundell also held prestigious and influential positions with international agencies and organizations, as well as serving as an adviser to several governments and being the author of scores of articles and several books, notably Man and Economics (1968) and Monetary Theory: Interest, Inflation and Growth in the World Economy (1971).

      Mundell's previous honours included the Guggenheim Prize (1971), the Jacques Rueff Medal and Prize (1983), and the Docteur Honoris Causa (University of Paris, 1992). In September 1998 he delivered the Ohlin Lectures, and shortly thereafter he was named a fellow of the American Academy of Arts and Sciences.

Janet H. Clark

Prize for Literature
      German author Günter Grass, who was awarded the 1999 Nobel Prize for Literature, was praised by the Swedish Academy for his uncompromising tenacity in portraying “the forgotten face of history.” Although known primarily for his fiction, Grass, a prolific and versatile writer, was also a highly regarded poet, playwright, journalist, and ballet librettist. His enormous range of talent also extended to graphic arts, sculpting, and painting.

      Grass played a significant role in the revival of German literature in the aftermath of World War II and achieved critical acclaim following the 1959 publication of his controversial epic first novel, Die Blechtrommel (The Tin Drum, 1962); together with writers Heinrich Böll and Hans Magnus Enzensberger, he came to personify the moral conscience of the postwar German experience. Fusing literature with social and political activism, Grass confronted the horror of war and the Holocaust as a means to reconcile both past and present.

      Grass was born on Oct. 16, 1927, in Danzig (now Gdańsk, Pol.), at that time a designated free city. A predominantly German-speaking enclave, Danzig became a strategic political objective in Adolf Hitler's campaign for European dominance prior to World War II and would later serve as a recurring motif in Grass's fictional oeuvre. Following the German occupation of Poland, Grass was absorbed into the Hitler Youth movement and at age 16 was drafted into the military. Wounded near Cottbus, Ger., in April 1945, he was later captured by American forces and interned in a prisoner-of-war camp in Bavaria. Released in the spring of 1946, Grass worked as a farm labourer and then in a potash mine before moving in 1947 to Düsseldorf, Ger., ostensibly to study painting at the Academy of Art. Instead, he became apprenticed to a stonemason and later relocated to what was then West Berlin, where he studied sculpture and worked as an artist. In 1954 Grass married Anna Schwarz, a Swiss dancer who sparked his interest in ballet; together they had four children. It was during this period that Grass began writing poetry and experimental plays that generated interest and later financial support from the prestigious literary association Gruppe 47. His first collection of poetry appeared in 1956, the same year Grass and his wife moved to Paris. There he began work in earnest on Die Blechtrommel, which together with Katz und Maus (1961; Cat and Mouse, 1963) and Hundejahre (1963; Dog Years, 1965) formed what became the “Danzig Trilogy.”

      One of the most provocative novels of the second half of the 20th century, Die Blechtrommel was a nightmarish journey into the schism of human degradation, evoking the rise of Nazism as seen through the tormented gaze of Oskar Matzerath, the boy with the tin drum and glass-shattering voice whose existence reflects the decadence and decay of the age in which he lives. Based in part on autobiographical elements, Oskar is also a reflection of Grass himself, each in his own way intertwined in the struggle between good and evil. For Oskar the confrontation spirals out of control, and his chaotic descent into violence and rage ends in madness, the echo of his constant drumming a form of protest against a dissonant and unforgiving world subdued into silent resignation. Grass was more fortunate and in his own survival finds redemption as well as artistic purpose and direction.

      The haunting experience of war and its consequences would inform both Katz und Maus and Hundejahre, which further enhanced his critical reputation and secured for Grass a position as a writer of major importance within contemporary German literature. It was during this same time that he became increasingly involved in the German political system, supporting the Social Democratic Party (SPD) and actively campaigning for Willy Brandt, who in 1969 became chancellor of the Federal Republic of Germany. Disheartened but not disillusioned by Brandt's resignation in 1974—following the disclosure that a high-level assistant had in fact been an East German spy—Grass remained a tireless and undaunted advocate for human rights and global accord. The merger of politics and literature firmly established Grass as a formidable and influential public figure but simultaneously proved detrimental to his personal life, as evinced in his massive narrative Der Butt (1977; The Flounder, 1978), and in 1978 his marriage ended in divorce. The following year Grass married Ute Grunert.

      With persistent and unrelenting conviction, Grass continued to be an outspoken critic of contemporary society as well as a productive author of exceptional merit. His other literary works include Unkenrufe (1992; The Call of the Toad, 1992), Ein weites Feld (1995; to be published in 2000 as Too Far Afield),and Mein Jahrhundert (1999; My Century, 1999), in which Grass tells a story for each year that together forms a narrative chronicle of the 20th century.

Steven R. Serafin

Prize for Chemistry
      Ahmed H. Zewail won the 1999 Nobel Prize for Chemistry for developing a technique that allows scientists to study chemical reactions in “slow motion,” visualizing in real time what actually happens when chemical bonds break and new bonds form. The discovery opened a new field of chemistry, femtochemistry, which uses ultrafast laser flashes to probe the innermost secrets of chemical reactions. The flashes take place on the same time scale in which chemical reactions occur—fs (femtoseconds). One femtosecond is 0.000000000000001 second, or 10–15 second. This field of physical chemistry thus became known as femtochemistry.

      “Professor Zewail's contributions have brought about a revolution in chemistry and adjacent sciences, since this type of investigation allows us to understand and predict important reactions,” the Royal Swedish Academy of Sciences said in awarding the prize. “Femtochemistry has fundamentally changed our view of chemical reactions.” One ultimate goal of femtochemistry, the Nobel Assembly said, is to gain better control over the outcome of chemical reactions. Many chemical reactions that produce industrial and commercial products also yield unwanted products that add to the cost of production. These products must be separated from those that are desired. Knowledge gained from femtochemistry may eventually enable chemists to orchestrate reactions so that selected bonds are broken or not broken to produce precisely the desired product.

      Zewail, Linus Pauling professor of chemical physics and professor of physics at the California Institute of Technology, was born in Damanhur, Egypt, on Feb. 26, 1946. After receiving undergraduate and master's degrees from the University of Alexandria, he earned a doctorate from the University of Pennsylvania. He held dual U.S.-Egyptian citizenship and joined the Caltech faculty in 1976.

      Chemical reactions are responsible for changes that occur in matter. Reactions occur when molecules collide, and some of the bonds holding their atoms together break. Atoms or groups of atoms in the original substances are redistributed, and new bonds form to produce new substances.

      The speed of a reaction generally increases with temperature. Increasing the temperature imparts energy to molecules and makes them move faster. When molecules collide at ordinary temperatures, they simply bounce apart, and no reaction occurs. High-temperature collisions, however, are so violent that the molecules react with one another and new molecules form. Researchers long believed that molecules must be activated, pushed over an invisible energy barrier, in order to react. They knew little, however, about a molecule's movement up the barrier, the form that it assumes at the top of the barrier (in a condition termed the transition state), or the substances, called intermediates, formed in the split second during which a reaction proceeds from the original reactants to the final products. Many assumed that the transition state and intermediates lasted such an incredibly brief period of time, typically 10–100 fs, that it would never be possible to study those events during a chemical reaction. In the late 1980s, however, Zewail supplied the method, femtosecond spectroscopy, for performing such studies. It was based on new laser technology capable of producing light flashes lasting just tens of femtoseconds, the same time scale as the events in chemical reactions. Zewail and his associates used the technology to build a camera that the Nobel Assembly compared to the slow-motion cameras used to “freeze” rapidly occurring plays in football and other sporting events.

      In femtosecond spectroscopy molecules being studied are mixed together in a vacuum chamber. An ultrafast laser then beams in two pulses. One, called the pump pulse, supplies energy needed to drive the molecules up the energy barrier to the transition state. A second, weaker beam called the probe pulse is tuned to the wavelength necessary for detecting the original molecules or an altered form of the molecules. The pump pulse starts the reaction, and the probe pulse examines the ongoing reaction. By studying characteristic spectra, or light patterns, from the molecules, researchers can determine the structure of molecules at the transition state as well as the intermediate products.

      “With femtosecond spectroscopy we can for the first time observe in ‘slow motion' what happens as the reaction barrier is crossed,” the Nobel Assembly said. “Scientists the world over are studying processes with femtosecond spectroscopy in gases, in fluids and in solids, on surfaces and in polymers. Applications range from how catalysts function and how molecular electronic components must be designed, to the most delicate mechanisms in life processes and how the medicines of the future should be produced.”

Michael Woods

Prize for Physics
      Two Dutch scientists won the 1999 Nobel Prize for Physics for having developed a way to predict mathematically the properties of both the subatomic particles that make up all matter in the universe and the forces that hold those particles together. Their work put particle physics on a firmer mathematical foundation and led to the discovery of a new subatomic particle, the top quark. The Royal Swedish Academy of Sciences awarded the prize to Martinus J.G. Veltman and his former graduate student Gerardus 't Hooft for work done in the 1960s and 1970s when both were with the State University of Utrecht, Neth.

      Veltman, born June 27, 1931 in Waalwijk, Neth., received a doctoral degree in physics in 1963 at Utrecht and worked there until moving to the University of Michigan at Ann Arbor in 1981. 'T Hooft was born July 5, 1946, in Den Helder, Neth., and received his doctoral degree at Utrecht in 1972, where in 1999 he served as a professor of physics.

      When Veltman and 't Hooft began their prizewinning research, the fundamental theory of particle physics, termed the “standard model,” was incomplete. Particle physics emerged in the 1950s, with development of large accelerators that allowed scientists to study the most fundamental components of matter. All physical matter in the universe is made from atoms, which consist of central nuclei surrounded by electron clouds. The nucleus of each atom consists of smaller, or subatomic, particles, called protons and neutrons. Protons and neutrons are made from still smaller particles.

      The standard model groups all subatomic, or elementary, particles into three families of quarks and leptons. It describes how quarks and leptons interact via a number of “exchange particles” for two of the four fundamental forces in nature, the strong force and the electroweak force. Eight massless “gluons” mediate the strong force, and four other exchange particles (the photon, the W+, the W–, and the Z) mediate the electroweak force. Rounding out the standard model's building blocks of matter is a very heavy particle (predicted but not yet observed) called the Higgs particle. “The theoretical foundation of the standard model was at first incomplete mathematically and in particular it was unclear whether the theory could be used at all for detailed calculations of physical quantities,” the Royal Swedish Academy of Sciences said. “Gerardus 't Hooft and Martinus J.G. Veltman are being awarded this year's Nobel Prize for having placed this theory on a firmer mathematical foundation. Their work has given researchers a well-functioning ‘theoretical machinery' which can be used for, among other things, predicting the properties of new particles.”

      In the 1960s researchers collaborated in the development of a theory that unified two of the fundamental forces (electromagnetism and the weak force). It showed that both are manifestations of a single underlying force, now termed the electroweak force. The new theory predicted the existence of the W and Z particles, which were identified in 1983.

      Many researchers, however, questioned the validity of the electroweak theory. When they tried to use the theory to calculate properties of elementary particles, it produced unreasonable results. The situation resembled one that existed in the 1940s, when another bedrock theory of physics, quantum electrodynamics theory, also produced obviously incorrect results. That problem was solved by scientists who developed a method to change, or “renormalize,” quantum electrodynamics into a workable theory.

      As a newly appointed professor in the late 1960s, Veltman became convinced that it would be possible to renormalize the electroweak theory as well. 'T Hooft, then a 22-year-old doctoral student, joined him early in 1969 to work on the problem. In 1971 't Hooft published two articles that represented a major advance toward the goal, according to the Academy. With the help of a computer program developed by Veltman, the two researchers then completed the work that put the electroweak theory on a firm mathematical foundation.

      Veltman and 't Hooft used the knowledge immediately to identify the properties of the W and Z particles predicted by the electroweak theory. This enabled physicists to conduct the experiments with particle accelerators that eventually led to the particles' discovery. Likewise, physicists used the Veltman–'t Hooft method to predict the mass of the top quark and thus facilitated its discovery.

      The next great discovery from the research would probably be detection of the Higgs particle, whose existence the standard model also predicted. The Royal Academy said, however, that this might not occur until 2005, when a more powerful particle accelerator, the Large Hadron Collider, became operational.

Michael Woods

Prize for Physiology or Medicine
      The 1999 Nobel Prize for Physiology or Medicine was awarded to Günter Blobel, of the Rockefeller University, New York City, for discovering the cellular “zip code,” or “address tag,” system that enables proteins newly manufactured inside cells to find their proper destinations.

      “Günter Blobel's discovery has had an immense impact on modern cell biological research,” said the Nobel Assembly at the Karolinska Institute in Sweden, which awards the medicine prize. It not only explained one of the most fundamental activities inside cells but also helped scientists understand the molecular basis of some hereditary diseases. A number of such diseases result from errors in a protein's address or in its transport to the proper site. They include cystic fibrosis and some forms of familiar hypercholesterolemia, a condition in which people produce extremely high levels of cholesterol. Blobel's research also contributed to the development of more effective ways of using cells as protein factories to produce human insulin, human growth hormone, and other drugs.

      An adult human has about 100 trillion cells, each composed of many individual units, or organelles. Separate compartments inside the cell, each organelle performs specialized functions essential for life. One organelle is the cell nucleus, which contains the genetic material DNA and its chemically encoded instructions for manufacturing proteins. Those instructions are used to make proteins in other organelles. Each cell contains about one billion protein molecules, which have a wide variety of specific functions. Some are used inside the cell as structural material for building new cell components. Others serve as enzymes that speed up biochemical reactions. Still other proteins must be transported to the cell membrane so they can be exported outside the cell to circulate in the blood to other parts of the body. Life and good health depend on the ability of each protein to reach the location inside or outside a cell where it is needed.

      For decades biologists did not understand two critical details of protein processing—how newly produced proteins are routed to their correct locations in a cell and how proteins pass through the tightly sealed membrane that surrounds each organelle. Blobel, a cellular and molecular biologist, solved both mysteries. He was born on May 21, 1936, in Waltersdorf, Silesia, Ger. (now Niegoslawice, Pol.), and received his medical degree at Eberhard-Karl University of Tübingen, Ger. He moved to the United States and in the late 1960s joined a renowned Rockefeller University protein laboratory then led by George Palade. Palade shared the 1974 Nobel medicine prize for his research into cell structure and transport of proteins. By 1980 Blobel had established the general principles of how proteins are targeted to specific organelles within a cell. Working in collaboration with other research groups, he conducted a series of what the Nobel Assembly described as “elegant” biochemical experiments. They showed that each protein carries an “address code” within its molecular structure, a signal sequence that directs it to the proper locale inside the cell. Proteins are made from chains of amino acids arranged in a very specific order or sequence. The address code consists of a sequence of amino acids, usually located at one end of the protein. The code specifies whether the protein will pass through the membrane of a specific organelle, become integrated into the membrane, or be exported out of the cell. Blobel also concluded that proteins enter organelles through a porelike channel that opens in the organelle's outer membrane when the correct protein arrives at the organelle. Researchers eventually showed that the same topography-based, or “topogenic,” signaling system exists in all other higher forms of life, including yeast, plant, and animal cells.

      Knowledge about the topogenic signals gave physicians important new insights into why diseases occur. If the signal in a protein is incorrect (owing to a defect in the DNA manufacturing instructions), the protein could end up in a wrong location in the cell. Such protein mistargeting is the reason why some hereditary diseases occur. The immune system also relies heavily on topogenic signals for proper functioning. Incorrect protein address tags can contribute to immune system disorders.

      The Nobel Assembly predicted that Blobel's discoveries would assume even greater practical importance in the future, with completion of the Human Genome Project (HGP). Information from the HGP, which was attempting to determine the location and structure of all human genes, would give scientists the ability to identify the topogenic signals in medically important proteins. This ability could open up new avenues for treating disease, such as developing drugs with a specific topogenic sequence; such drugs would be able to act on just one part of a cell.

Michael Woods

▪ 1999


Prize for Peace
      In October 1998 the Norwegian Nobel Committee awarded its Nobel Prize for Peace to the two architects of the peace agreement that had been signed on April 10, 1998, in Northern Ireland—John Hume, the Roman Catholic leader of the nationalist Social Democratic and Labour Party (SDLP), and David Trimble, the Protestant leader of the Ulster Unionist Party (UUP). Thirty years of violence, short-lived cease-fires, and spasmodic secret negotiations had given way to a deal that held out the hope of sustained peace for the troubled British province. For most of those 30 years, Hume and Trimble had been enemies; eventually, however, they came to trust each other and ended up sharing the same platform as they campaigned for peace—something that would have been inconceivable for most of their political lives.

      Hume, who was born Jan. 18, 1937, was brought up in poverty in Londonderry. He trained to be a priest but was attracted to politics by the civil rights movement in the late 1960s, when Northern Ireland's Catholic minority adopted the nonviolent tactics of the U.S. civil rights movement to protest against the discriminatory policies of the (mainly Protestant) Unionist rulers of the province. The violent suppression of this movement provoked hard-line nationalists to revive the Irish Republican Army (IRA). Hume, believing always in only peaceful and constitutional action, joined the SDLP; in 1973 he served briefly as commerce minister in the short-lived power-sharing assembly that was headed by the leader of the UUP and that collapsed in 1974. Five years later Hume became leader of the SDLP.

      In 1988, after 20 years of violence and with no end in sight, Hume took an enormous risk by opening a private dialogue with Gerry Adams, leader of Sinn Fein—the political wing of the IRA and the bitter rival of the SDLP in the contest to win the support of Northern Ireland's nationalist voters. Hume was frequently attacked by members of his own party for speaking to "the men of violence," but he persisted, believing that peace would come only when Adams could be persuaded to end the IRA's armed struggle—and when Adams could in turn persuade the rest of Sinn Fein and the IRA.

      Trimble's trajectory toward peace was rather different. Born Oct. 15, 1944, into a middle-class Belfast family, he first ventured into politics in 1973 when he joined the Vanguard Party, which was established following the abolition of Northern Ireland's provincial parliament at Stormont. The party provided more militant opposition to British direct rule than that offered by the official UUP. As an active member of Vanguard, Trimble supported the strikes by Protestant workers that brought down the power-sharing assembly in which Hume had served.

      In the mid-1970s Vanguard split, and Trimble, as part of its relatively moderate faction, joined the UUP. His opposition to any concession to Irish nationalism persisted, however; in 1985 he joined a newly formed organization, Ulster Clubs, which was dedicated to militant tactics to derail the 1985 Anglo-Irish accord designed to bring peace to the province. When the IRA called a cease-fire in 1994, Trimble opposed negotiations with Sinn Fein and warned his party not to make concessions to terrorism. In 1995 his record as a hard-liner helped him win a surprise victory in the contest to succeed James Molyneaux as leader of the UUP.

      Once elected leader, however, he proved to be more thoughtful and less strident than expected. He agreed to take part in peace talks chaired by former U.S. senator George Mitchell. The talks—which progressed slowly, primarily because the IRA in February 1996 had resumed violent struggle before agreeing to a "permanent" cease-fire in July 1997—embraced every political group in Northern Ireland, from Sinn Fein to the Protestant paramilitary groups and to the British and Irish governments. It was the dialogue between Hume and Trimble that was crucial, however. In the end, both men had enough credit with the more militant members of their communities to deliver the compromises that were inevitable to secure the agreement that became known as the "Good Friday" peace pact.


Prize for Economics
       Amartya Sen was awarded the 1998 Nobel Memorial Prize in Economic Science for his contributions to welfare economics and social choice and for his interest in the problems of society's poorest members. Sen was best known for his work on the causes of famine, which led to the development of practical solutions for preventing or limiting the effects of real or perceived shortages of food. The Royal Swedish Academy of Sciences noted that Sen's work "restored an ethical dimension to the discussion of vital economic problems." In recognizing his work on the social underpinnings of economics, the Nobel Committee broke with its tradition of the previous few years of awarding its prize to those researchers, most of them conservative, working in the field of market economics.

      Welfare economics is the branch of economics that seeks to evaluate economic policies in terms of their effects on the well-being of the community. Sen, who devoted his career to such issues, had been called the "conscience of his profession." His influential monograph Collective Choice and Social Welfare (1970), which addressed problems such as individual rights, majority rule, and the availability of information about individual conditions, inspired many researchers to turn their attention to issues of basic welfare. Sen devised methods of measuring poverty that yielded information useful to improving economic conditions for the poor. His theoretical work on inequality provided an explanation for why there are fewer women than men in some poor countries in spite of the fact that more women than men are born and infant mortality is higher among males. Sen claimed that this skewed ratio results from the better health treatment and childhood opportunities afforded boys in those countries.

      Sen's interest in famine stemmed from personal experience. As a nine-year-old boy, he witnessed the Bengal famine of 1943, in which three million people perished. This staggering loss of lives was unnecessary, Sen concluded, given that there was, he believed, an adequate food supply in India at the time. Its distribution was hindered, however, because particular groups of people—in this case rural labourers—lost their jobs and therefore their ability to purchase food. In his book Poverty and Famines: An Essay on Entitlement and Deprivation (1981), Sen revealed that in many cases of famine, food supplies were not significantly reduced. Instead, a number of social and economic factors, such as declining wages, unemployment, rising food prices, and poor food-distribution systems, led to starvation in certain groups in society.

      Governments and international organizations handling food crises were influenced by Sen's work. His views encouraged policy makers to pay attention not only to alleviating immediate suffering but also to finding ways to replace the lost income of the poor, as, for example, through public-works projects, and to maintain stable prices for food. A vigorous defender of political freedom, Sen believed that famines do not occur in functioning democracies because their leaders must be more responsive to the demands of the citizens. In order for economic growth to be achieved, he argued, social reforms, such as improvements in education and public health, must precede economic reform.

      Sen was born in Santiniketan, Bengal, India, on Nov. 3, 1933, and was educated at Presidency College in Calcutta. He went on to study at Trinity College, Cambridge, where he received his B.A. (1955), M.A. (1959), and Ph.D. (1959). While at Trinity he was awarded the Adam Smith Prize (1954), the Wrenbury Scholarship (1955), and the Stevenson Prize (1956). He taught economics at a number of universities in India and England, including the Universities of Jadavpur (1956-58) and Delhi (1963-71), the London School of Economics, the University of London (1971-77), and the University of Oxford (1977-88), before moving to Harvard University (1988-98), where he was professor of economics and philosophy. In 1998 he was appointed to his current position as master of Trinity College, Cambridge. Sen was the sixth Indian to win a Nobel Prize and the first to be awarded the economics prize.


Prize for Literature
      Although Portuguese author José Saramago did not begin writing in earnest until his mid-50s, some critics believed that his reception of the 1998 Nobel Prize for Literature was long overdue. Heralded as an achievement for the language and culture of Portugal, it was only the second Nobel awarded to a Portuguese (neurologist António Egas Moniz won the 1949 Prize for Physiology or Medicine). Saramago came of age as a writer in the 1980s with a series of inventive, multilayered novels that ruminated on human fate and foibles. Often presented as allegory, his stories balanced the gravity of his political skepticism and historical knowledge with the lightness of magic realism, experimental grammar, and compassion for his characters. In addition to authoring 10 best-selling novels, Saramago wrote poetry, plays, short stories, and essays.

      Saramago first earned international fame at age 60 with Memorial do convento (1982; published in the U.S. as Baltasar and Blimunda, 1987), widely considered his finest novel. Set in the early 18th century during the Inquisition, it was an intricate historical fantasy about a romance between war veteran Baltasar and clairvoyant Blimunda, who with the help of an adventurous priest, build a flying machine powered by human will. Central to the plot was the epic construction of the Convent of Mathra (1717-35), outside Lisbon. Saramago adapted the novel into a libretto for the opera Blimunda (1990), with a score by Italian composer Azio Corghi. The novel's satire was unflinching in its litany of class differences between the haves and the have-nots:

The heat is unbearable and the spectators refresh themselves with the customary glass of lemonade, cup of water or slice of water-melon, for there is no reason why they should suffer from heat prostration just because the condemned are about to die. And should they feel peckish, there is a wide choice of nuts and seeds, cheeses and dates. The King, with his inseparable Infantes and Infantas, will dine at the Headquarters of the Inquisition as soon as the auto-da-fé has ended. Once free of the wretched business, he will join the Chief Inquisitor for a sumptuous feast laden with bowls of chicken broth, partridges, breasts of veal, pâtés and meat savouries flavored with cinnamon and sugar, a stew in the Castilian manner with all the appropriate ingredients and saffron rice, blancmanges, pastries, and fruits in season.

      Saramago was born on Nov. 16, 1922, into a farming family in the village of Azinhaga, Ribatejo province. He left high school early to begin work, eventually entering publishing as a journalist and editor, though he wrote little on his own. Stifled by the repressive cultural atmosphere during the dictatorship of António de Oliveira Salazar, Saramago joined the Communist Party in 1969, but, following the revolution of April 1974, an anticommunist backlash forced him from his job at the newspaper. At that time he began writing. In 1977 he published his first novel, Manual de pintura e caligrafia (1976; Manual of Painting and Calligraphy, 1994), about an idealistic portrait painter who makes sacrifices to defend his integrity as an artist and a critic. His themes turned to politics in a collection of short stories, Objecto Quase (1978) and the follow-up novel Levantado do chão (1980), set during the Salazar regime.

      In 1986, as Spain and Portugal were joining the European Community, Saramago published A jangada de pedra (1986; The Stone Raft, 1994-95), a surreal tale of the Iberian peninsula physically breaking apart from Europe and floating out into the Atlantic Ocean; chaos reigns until a band of ordinary citizens takes control. When a proofreader inserts the word "not" into a sentence of a book about Portugal, history is literally rewritten in A história do cerco de Lisboa (1989; The History of the Siege of Lisbon, 1996), one of the author's most contemplative works. O evangelho segundo Jesus Cristo (1991; The Gospel According to Jesus Christ, 1994) raised some hackles in its well-crafted depiction of an earthy Jesus set in conflict with a ruthless God. After moving to the Canary Islands, Saramago wrote Ensaio sobre a cegueira (1995; Blindness, 1998), a sharp-edged social commentary about how an epidemic of blindness speeds civilization toward self-destruction. His most recent novel, Todos os nomes, was published in 1997.


Prize for Chemistry
      "As we approach the end of the 1990s, we are seeing the result of an enormous theoretical and computational development, and the consequences are revolutionizing the whole of chemistry." So stated the Royal Swedish Academy of Sciences in its award of the 1998 Nobel Prize for Chemistry to "the two most prominent figures in this process," Walter Kohn and John A. Pople. Kohn, an Austrian-born American physicist at the University of California, Santa Barbara, and Pople, a British citizen and a mathematical chemist at Northwestern University, Evanston, Ill., were widely acknowledged pioneers in devising computational methods to study the properties of interactions of molecules.

      The development of quantum mechanics in physics in the early 1900s offered chemists the potential for a deep new mathematical understanding of their science. Nevertheless, describing the quantum mechanics of large molecules, which are very complex systems, involved what appeared to be impossibly difficult computations. Chemists remained stymied until the 1960s, when computers for solving these complex equations became available. Quantum chemistry, the application of quantum mechanics to chemical problems, emerged as a new branch of chemistry. "Quantum chemistry is used nowadays in practically all branches of chemistry, always with the aim of increasing our knowledge of the inner structure of matter," the Swedish Academy said. "The scientific work of Walter Kohn and John Pople has been crucial for the development of this new field of research."

      Kohn and Pople made contributions as closely related as the two faces of a coin. The Swedish Academy cited Kohn for development of the density-functional theory in the 1960s. It simplified the mathematical description of bonding between atoms that make up molecules. Pople was cited for having developed computational methods, based on quantum mechanics, which he packaged in 1970 in the computer program Gaussian. Gaussian later became the basic tool used by thousands of scientists worldwide for modeling and studying molecules and chemical reactions.

      Before Kohn's and Pople's work, chemists thought that a description of the quantum mechanics of molecules required precise knowledge of the motion of every electron in every atom in a molecule. In 1964 Kohn showed that it is sufficient only to know the average number of electrons at any one point in space—i.e., the electron density. For determining that information Kohn introduced a computational method that became known as the density-functional theory. Years of additional research, however, were needed before chemists were able to apply the theory to large-scale studies of molecules. By the late 1990s the theory had become widely used as the basis for solving many problems in chemistry—for example, calculating the geometrical structure of large molecules such as enzymes and mapping the course of chemical reactions.

      Pople's research in the 1960s led to the discovery of a new approach for analyzing the electronic structure of molecules, based on the fundamental laws of quantum mechanics. He put the approach, called theoretical model chemistry, into a computer program that allowed chemists to create computer models of chemical reactions that were difficult or impossible to run in a laboratory. One use of such information was, in the development of new drugs, to determine how a molecule would react inside the body. In the early 1990s Pople incorporated Kohn's density-functional theory into the program, making possible the analysis of more complex molecules. The original program, Gaussian 70, was updated and improved over the years. Its commercial version, marketed by Gaussian Inc., Pittsburgh, Pa., was one of the most widely used quantum chemistry programs.

      Kohn was born on March 9, 1923, in Vienna and received a Ph.D. in physics from Harvard University in 1948. He developed his density-functional theory while at the University of California, San Diego (1960-79). In 1979 he became founding director of the Institute for Theoretical Physics at the University of California, Santa Barbara, where he later served as a professor (1984-91). Pople was born in Burnham-on-Sea, Somerset, Eng., on Oct. 31, 1925. He received a Ph.D. in mathematics in 1951 from the University of Cambridge. He became a professor at Carnegie Mellon University, Pittsburgh, in 1964 and a professor at Northwestern in 1993.


Prize for Physics
      The 1998 Nobel Prize for Physics was awarded to three scientists, a German and two Americans, who discovered that electrons in semiconductors placed in very strong magnetic fields at extremely low temperatures demonstrate bizarre behaviour. Under such conditions electrons condense to form a quantum fluid similar to the quantum fluids that occur in superconductivity and liquid helium. Electrons in the fluid act, seemingly impossibly, as if they have only a fraction of a whole electron charge. "What makes these fluids particularly important for researchers is that events in a drop of quantum fluid can afford more profound insights into the general inner structure and dynamics of matter," stated the Royal Swedish Academy of Sciences in its prize announcement. "The contributions of the three laureates have thus led to yet another breakthrough in our understanding of quantum physics and to the development of new theoretical concepts of significance in many branches of modern physics."

      The prize was shared by Horst L. Störmer of Columbia University, New York City, Daniel C. Tsui of Princeton University, and Robert B. Laughlin of Stanford University. Störmer was born on April 6, 1949, in Frankfurt am Main, Ger., and received a Ph.D. in physics in 1977 from the University of Stuttgart. Tsui, a naturalized U.S. citizen, was born in Henan, China, on Feb. 28, 1939, and earned a Ph.D. in physics in 1967 from the University of Chicago. Laughlin, born on Nov. 1, 1950, in Visalia, Calif., received his Ph.D. in physics in 1979 from the Massachusetts Institute of Technology.

      Störmer and Tsui were cited for the discovery in 1982 of a new aspect of a phenomenon first demonstrated in an 1879 experiment by Edwin H. Hall, a U.S. physicist. Hall found that when a conductor carrying an electric current is placed in a magnetic field that is perpendicular to the current flow, an electric field is created that is perpendicular to both the current and the magnetic field. This phenomenon, called the Hall effect, occurs because the magnetic field deflects the flow of electrons toward one side of the current-carrying material. The electric field gives rise to a voltage, called the Hall voltage, and the ratio of this voltage to the current is called the Hall resistance. The Hall effect, which occurs in both conductors and semiconductors, later became a standard measurement tool in physics laboratories around the world.

      In 1980 the German physicist Klaus von Klitzing discovered a variation of the Hall effect, which came to be called the integer quantum Hall effect. For moderate applied magnetic fields, the Hall resistance changes smoothly with changes in the strength of the field. Klitzing, however, used high-magnetic fields and temperatures near absolute zero to study the Hall effect in a semiconductor device in which electron motion was confined to two dimensions. Under those conditions he found that varying the magnetic field causes the Hall resistance to change not smoothly but rather in discrete steps, a behaviour physicists described as being quantized. Klitzing won the 1985 Nobel Prize for Physics for his work.

      In 1982 Störmer and Tsui, then at Bell Laboratories, Murray Hill, N.J., carried out a similar experiment using even lower temperatures and stronger fields. To their surprise they found more steps in the Hall resistance, some of them lying between Klitzing's integer steps. Whereas the integer quantum Hall effect could be understood in terms of the behaviour of individual electrons, the new effect suggested that the involved particles had fractional electric charges—one-third, one-fifth, or one-seventh that of an electron. The finding mystified and excited physicists, who searched for an explanation.

      A year later Laughlin, at Bell Labs and then Lawrence Livermore National Laboratory, Livermore, Calif., in the early 1980s, solved the mystery with a theoretical explanation. He proposed that the low temperature and intense magnetic field made the electrons condense into a new kind of quantum fluid. Earlier researchers had observed other quantum fluids at very low temperatures in liquid helium and in superconductor materials. Laughlin's quantum fluid exhibited many bizarre properties, including one in which the participating electrons behaved as fractionally charged "quasiparticles." Laughlin showed that such quasiparticles had exactly the right electric charges to explain Störmer and Tsui's findings.

      The Swedish Academy stated that the laureates' work in 1982-83 represented "an indirect demonstration of the new quantum fluid and its fractionally charged quasiparticles." Verification came only in the late 1990s thanks to "astonishing developments in microelectronics" that made it possible to obtain more direct evidence for the existence of quasiparticles.


Prize for Physiology or Medicine
      Three American scientists, Robert F. Furchgott of the State University of New York (SUNY) Health Science Center in Brooklyn, Ferid Murad of the University of Texas Medical School in Houston, and Louis J. Ignarro of the University of California School of Medicine in Los Angeles, won the 1998 Nobel Prize for Physiology or Medicine for discovering that a gas, nitric oxide (NO), acts as a signaling molecule in the cardiovascular system. Their work, the bulk of which was performed in the 1980s, uncovered an entirely new mechanism for how blood vessels in the body relax and widen. It led to the development of the anti-impotence drug Viagra (see Sidebar (Viagra: A Second Honeymoon? )) and potential new approaches for understanding and treating other diseases.

      The Nobel Assembly of the Karolinska Institute in Stockholm, which presented the prize, said that the identification of a biological role for NO was surprising for several reasons. Nitric oxide was known mainly as a harmful air pollutant, released into the atmosphere from automobile engines and other combustion sources. In addition, it was a simple molecule, very different from the complex neurotransmitters and other signaling molecules that regulate many biological events. No other known gas acts as a signaling molecule in the body.

      Nitric oxide's role began to emerge in the 1970s and '80s. In 1977 Murad, then at the University of Virginia, showed that nitroglycerin and several related heart drugs induce the formation of NO and that the colourless, odourless gas acts to increase the diameter of blood vessels in the body. Murad was born on Sept. 14, 1936, in Whiting, Ind., and received his M.D. and Ph.D. degrees from Western Reserve University (later Case Western Reserve University), Cleveland, Ohio, in 1965. Murad was also cited by the committee for work that he accomplished at Stanford University in the 1980s and later at Abbott Laboratories in Illinois.

      Around 1980 Furchgott, in an ingenious experiment, demonstrated that cells in the endothelium, or inner lining, of blood vessels produce an unknown signaling molecule. The molecule, which he named endothelium-derived relaxing factor (EDRF), signals smooth muscle cells in blood vessel walls to relax, dilating the vessels. Furchgott was born on June 4, 1916, in Charleston, S.C. In 1940 he earned a Ph.D. in biochemistry from Northwestern University, Evanston, Ill., and he joined SUNY-Brooklyn's Department of Pharmacology in 1956.

      The Nobel Committee cited Ignarro for "a brilliant series of analyses" that demonstrated that EDRF was nitric oxide. Ignarro's research, conducted in 1986, was done independently of Furchgott's own work to identify EDRF. It was the first discovery that a gas could act as a signaling molecule in a living organism. Ignarro, who was born on May 31, 1941, in Brooklyn, gained a Ph.D. in pharmacology from the University of Minnesota. Before making his significant discovery at UCLA, he was professor of pharmacology (1979-85) at Tulane University's School of Medicine, New Orleans.

      Furchgott and Ignarro first announced their findings at a scientific conference in 1986 and triggered an international boom in research on nitric oxide. Scientists later showed that NO is manufactured by many different kinds of cells in the body and has a role in regulating a variety of body functions. The Nobel Assembly said that the scientists' research was key to the development of the highly successful drug Viagra, which acts to increase NO's effect in penile blood vessels. Researchers expected that other medical applications of knowledge about NO would come in treating heart disease, shock, and cancer. Tests that analyze production of NO also could improve the diagnosis of lung diseases such as asthma and intestinal disorders such as colitis.

      The Nobel Assembly cited one irony about the award. When Alfred Nobel, inventor of dynamite, became ill with heart disease, his physicians advised him to take nitroglycerin. Dynamite consists of nitroglycerin absorbed in a material called kieselguhr, which makes nitroglycerin less likely to explode accidentally. Nobel, however, refused, unable to understand how the explosive could relieve chest pain. It took science 100 years to find the answer in NO, the Assembly said.


▪ 1998


Prize for Peace
      The banning of antipersonnel land mines took only six years—from November 1991, when American activist Jody Williams helped found the International Campaign to Ban Landmines (ICBL), to December 1997, when 131 nations met in Ottawa and 123 signed or indicated that they would sign the historic treaty. On December 10, six days after the closing of the Ottawa conference, Williams and ICBL were honoured in Oslo with the Nobel Prize for Peace; Williams and ICBL were awarded equal shares in the prize.

      Inexpensive to manufacture (about $5 apiece) but costly to detect and defuse (about $1,000 for each one), antipersonnel mines, which were more compact and more prevalent than antitank mines, were considered especially advantageous for their ease of placement and indiscriminate element of terror. According to Williams and ICBL, in some 68 countries there were an estimated 110 million antipersonnel land mines that maimed or killed at the rate of 26,000 persons—most of them civilians—each year. Because minefields were more likely to be found in less-developed countries recovering from recent wars—such as Angola, Bosnia and Herzegovina, and Cambodia—resulting deaths and injuries took a tremendous toll on overburdened health services, and land mine removal drained national finances and rendered land unusable.

      The treaty signed in December mandated an absolute ban on land mine production, export, and use, as well as the destruction of existing stockpiles and the removal of active mines. Despite major signatory holdouts—such as the United States and China—the campaign to ban land mines received worldwide support, and the efforts of ICBL were supported by such figures as Diana, princess of Wales (see OBITUARIES (Diana, princess of Wales )), U.S. Sen. Patrick Leahy, and Canadian Foreign Minister Lloyd Axworthy. Accepting the Nobel Prize on behalf of ICBL was Cambodian Tun Channareth, who had lost his legs to a land mine in 1982.

      Williams was born on Oct. 9, 1950, and earned (1984) a master's degree in international studies from Johns Hopkins University, Washington, D.C. For more than a decade, she worked to influence U.S. foreign policy in Central America as coordinator of the Nicaragua-Honduras Education Project and as associate director of Medical Aid to El Salvador.

      By November 1991 these interests had brought her into contact with the Vietnam Veterans of America Foundation (VVAF), which, along with the German-based group Medico International, formed ICBL, with Williams as campaign coordinator. The campaign built upon the failures of the 1980 Geneva Convention on Inhumane Weapons, which was unable to achieve an absolute ban on antipersonnel land mines—although attending nations, reconvening later in the mid-1990s, agreed to standardize some specifications for producing the weapons.

      Under Williams, ICBL expanded into a coalition of about 1,000 nongovernmental humanitarian, medical, and developmental groups from more than 50 nations. Its steering committee, under the leadership of the VVAF, was made up of nine international organizations. Williams was coauthor, with Shawn Roberts, of After the Guns Fall Silent: The Enduring Legacy of Landmines (1995).


Prize for Economics
      The stereotype that the Nobel Memorial Prize in Economic Science is usually awarded for dry academic concepts with only theoretical rather than applied value was far from the truth in 1997. Not only had the prizewinners, American Robert C. Merton and Canadian-born Myron Samuel Scholes, seen their ideas put to use, but they also had profited from them. The pair shared the award for providing an answer to the fundamental question of how to measure the value of stock options and other derivatives, an answer that had helped fuel the growth of world financial markets for 20 years. They had also put their money where their mouths were by becoming principals in Long-Term Capital Management, a $6 billion firm that invested primarily in fixed-income securities and derivatives of those securities; Merton was even one of the firm's cofounders.

      Scholes's greatest contribution to the field of economics was the formula that bore his name: the Black-Scholes option-valuation formula, developed in tandem with Fischer Black, whose death in 1995 made him ineligible for the Nobel Prize (which is not awarded posthumously). Despite some early difficulty in finding a publisher, Scholes and Black were able to present their landmark formula in the Journal of Political Economy in 1973. Prior to this time, it had been difficult for people to determine the value of stock options (purchased agreements that give investors or traders the right to either buy or sell an asset at a fixed time in the future). Although investors could calculate a risk premium to hedge against major financial losses, they lacked the means to predict such a premium accurately.

      The Black-Scholes formula, though mathematically complex, was based on a series of rather straightforward variables: the current share price, the future strike price, the time to maturity, the time to expiry, and the interest rate on alternative, risk-free investments. The formula helped lessen the high risk inherent in the derivatives market by demonstrating that risk premiums are not necessary for investment in stock options because they already are factored into the price of the stock. The implication was that options should be priced as a type of insurance, or hedging device, so that they mirrored risk-free investment alternatives, such as treasury bills. This made the trading of options and other derivatives more attractive to investors, and soon the Black-Scholes formula was adopted by traders worldwide as the main method for valuing stock options. By the mid-1970s traders at the Chicago Board Options Exchange were able to compute instantly the value of options on hand-held electronic calculators. Merton used his background in mathematics to build on the Black-Scholes formula by demonstrating how certain restrictions, such as the assumption that a stock will pay no dividends, could be relaxed. By altering the formula, he showed how it could be applied to financial matters other than options, including home mortgages and student loans, and to risk management in general.

      Scholes was born on Jan. 7, 1941, in Timmins, Ont., and educated at McMaster University, Hamilton, Ont. (B.A., 1961), and the University of Chicago (M.B.A., 1964; Ph.D., 1970), where he studied under Nobel laureate Merton H. Miller. Scholes taught at the Massachusetts Institute of Technology (MIT; 1968-73) and the University of Chicago (1973-83) before joining (1983) Stanford University as a professor of both law and finance.

      Merton, whose father was a noted sociologist, was born in New York City on July 31, 1944. He studied engineering mathematics at Columbia University, New York City (B.S., 1966), applied mathematics at the California Institute of Technology (M.S., 1967), and economics at MIT (Ph.D., 1970). He taught at MIT's Sloan School of Management from 1970 until 1988, when he joined the Harvard Business School. Merton, who sat on the boards of several economic journals and mutual fund companies, wrote economic treatises on corporate finance, as well as the book Continuous-Time Finance (1990).


Prize for Literature
      Soon after being named winner of the 1997 Nobel Prize for Literature in October, Italian actor-playwright Dario Fo demonstrated to the world how he had secured his reputation as a social agitator. He announced that his $1 million Nobel award would be donated to the legal defense of three former radicals who were imprisoned for a murder associated with an incident that formed the centrepiece of one of his best-known satires, Morte accidentale di un anarchico (1974; Accidental Death of an Anarchist). The play tells of an anarchist who was unjustly blamed for terrorist bombings and during police interrogation was thrown from a fifth-story window to his death—a death that was ruled accidental. The police interrogators, led by the main character, Il Matto (“The Maniac”), beat the suspect and brought him to the window “and made him lean out for a bit of cool night air to revive him . . . Apparently, there was a misunderstanding between the two officers supporting him as often happens in these cases, each of them thought the other one was holding him—‘You got him Gianni?' ‘You got him Luigi?' and bump, down he went.” In the real-life 1969 case, the government destroyed evidence relating to the bombing, and the three radicals for whom Fo lent his celebrity support were convicted of the 1972 assassination of the chief interrogator. They were demanding a new trial, however.

      The selection of the avant-garde dramatist and performer came as a surprise to many Nobel Prize watchers, including Fo himself, and the inter-national literary establishment reacted somewhat coolly to the news. Partially blinded by a stroke in 1996, Fo brought characteristic levity to the staid Nobel ceremony in December by handing out colourful drawings and delivering an improvised speech. His risky theatrical caricatures lampooned what he viewed as hypocrisy in government, society, and religion and were occasionally the subject of official condemnation. The Vatican, for example, censured his popular one-man show, Mistero Buffo (1973) as “the most blasphemous show in the history of television” for such irreverent scenes as the one in which Jesus Christ transforms the wedding at Cana into a drunken bacchanal. Based on medieval mystery plays, Mistero Buffo remained topical, changing with every audience. Fo's biting brand of comedy was perhaps best described in a monologue from the same work: “I am the jongleur . . . I make fun of those in power, and I show you how puffed up and conceited are the big shots who go around making wars in which we are the ones who get slaughtered. I reveal them for what they are. I pull out the plug, and pssss they deflate.”

      Fo was born on March 24, 1926, in Leggiuno-Sangiamo, a fishing village north of Milan, the city where he later settled. By the early 1950s he was creating satirical revues for small theatres, often appearing with the actress Franca Rame, whom he married in 1954. Their agitprop theatre of leftist politics was rooted in the traditions of commedia dell'arte and court jesters, and when their clownish sketches on the television show “Canzonissima” lasted only seven weeks in 1962, their notoriety was fueled. In 1968 Fo and Rame founded the acting troupe Nuova Scena, which was financed by the Italian Communist Party. They left the party in 1970, however, to establish the touring company Collettivo Teatrale La Comune.

      Fo wrote about 70 plays, coauthoring some of them with Rame, notably Female Parts (1981). Fo's other works include Non si paga, non si paga! (1974; We Can't Pay? We Won't Pay!), Tutta casa, letto e chiesa (1978; Adult Orgasm Escapes from the Zoo), Il papa e la strega (1989; The Pope and the Witch), and Il diavolo con le zinne (1997).


Prize for Chemistry
      A Dane, a Briton, and an American shared the 1997 Nobel Prize for Chemistry for discoveries about ATP synthase, an enzyme responsible for making adenosine triphosphate (ATP), the universal energy carrier in living cells. By means of energy-rich chemical bonds, the molecule ATP captures the chemical energy released from food and makes it available to cells for muscle contraction, transmission of nerve impulses, construction of cell components, and other processes. It serves this critical function, often described as the energy currency of cells, in living things ranging from microbes to humans.

      The Royal Swedish Academy of Sciences awarded half of the $1 million prize to Paul Delos Boyer of the University of California, Los Angeles (UCLA), and John Ernest Walker of the Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, Eng. They were honoured for research conducted independently that explained the way ATP synthase works as a catalyst in cells to promote the synthesis of ATP. The other half of the prize went to Jens Christian Skou of Aarhus University, Århus, Den., for discovery of the first molecular pump in cells. Powered by ATP, molecular pumps are protein molecules that transport ions, or electrically charged atoms, through cell membranes. Skou discovered sodium, potassium-ATPase, a special enzyme that functions as such a pump by degrading ATP and using the released energy to power the transport process.

      When Boyer began his research on ATP formation in the early 1950s, scientists knew that it was the energy carrier in living cells. ATP consists of a molecule of adenosine linked to a chain of three phosphate groups by high-energy bonds. Removal of a phosphate group releases the stored energy for use by cells. In the process ATP becomes adenosine diphosphate (ADP). With help from chemical energy in food, a phosphate can be added to ADP, producing more ATP. In the late 1970s Boyer proposed the “binding-change hypothesis,” a detailed elucidation of the mechanism by which ATPase catalyzes synthesis of ATP from ADP and phosphate.

      “Walker's work complements Boyer's in a remarkable manner,” the Swedish Academy stated. Walker, who began studies on ATP synthase in the early 1980s, verified that the mechanism proposed by Boyer was valid. In the 1980s Walker deciphered the sequence, or linear arrangement, of the amino-acid building blocks of ATP synthase. He added further evidence in the 1990s by obtaining the first high-resolution crystal structure of the active part of ATP synthase. All of Walker's structural clarifications were consistent with Boyer's mechanism.

      Skou was honoured for research that he had done in the late 1950s. He established sodium, potassium ATPase as the first enzyme known to promote transport of ions through cell membranes. Such transport maintains normal concentrations of sodium, potassium, and other chemicals in cells. Sodium concentration inside cells is lower than outside, and potassium concentration is higher inside than out. When, for example, a nerve cell transmits an impulse, sodium ions pour into the cell, increasing their internal concentration. They must be transported out of the cell for it to fire again. That transport requires energy, which sodium, potassium-ATPase acquires by detaching phosphate groups from ATP molecules.

      Other researchers later discovered more ion pumps with similar structures and functions. A calcium pump, for instance, helps to control muscle contraction, and a hydrogen pump produces hydrochloric acid in the stomach. Popular drugs used to treat stomach ulcers and gastritis work by inhibiting action of the pump enzyme.

      Boyer was born on July 31, 1918, in Provo, Utah, and received a doctoral degree in biochemistry from the University of Wisconsin at Madison. After joining UCLA in 1963, he directed the institution's Molecular Biology Institute (1965-83) and became professor emeritus of chemistry and biochemistry (1990). Walker was born on Jan. 7, 1941, in Halifax, Eng., and received a Ph.D. from the University of Oxford. In 1982 he became senior scientist at the MRC Laboratory of Molecular Biology. Skou, born on Oct. 8, 1918, in Lemvig, Den., trained in medicine at the University of Copenhagen and earned a Ph.D. from Aarhus University, where he became professor of physiology (1963). In 1977 he was made professor of biophysics at Aarhus.


Prize for Physics
      The 1997 Nobel Prize for Physics was awarded to two American scientists and a French colleague for developing techniques for using laser light to cool and trap atoms so that they can be studied in detail. Other scientists extended the methods in 1995 to achieve a new state of matter termed a Bose-Einstein condensate and in 1997 to make an atom laser. (See Physics. (Mathematics and Physical Sciences ))

      Additional applications “are just around the corner,” stated the Royal Swedish Academy of Sciences, which awarded the prize. It cited superior atomic clocks for more accurate determinations of position on Earth and in space and new ways of making very small electronic components. “The new methods have contributed greatly to increasing our knowledge of the interplay between radiation and matter,” the Nobel citation added.

      The prize was shared by Steven Chu of Stanford University, William Daniel Phillips of the National Institute of Standards and Technology, Gaithersburg, Md., and Claude Nessim Cohen-Tannoudji of the Collège de France and the École Normale Supérieure, Paris. Chu was born on Feb. 28, 1948, in St. Louis, Mo., and received a doctoral degree from the University of California, Berkeley. In 1990 he became a professor at Stanford. Phillips, born on Nov. 5, 1948, in Wilkes-Barre, Pa., received a doctoral degree from the Massachusetts Institute of Technology. Cohen-Tannoudji was born on April 1, 1933, in Constantine, Alg., and received a doctoral degree from the École Normale.

      The three physicists worked independently, each moving the technology farther ahead. In 1985 Chu and his co-workers at Bell Laboratories, Holmdel, N.J., developed the original method for cooling atoms. The techniques were needed because atoms and molecules in gases move so fast—e.g., 4,000 km/h (2,500 mph) for atoms and molecules in air at room temperature—that detailed observations are difficult. Scientists knew that lowering the temperature could reduce the speed of the particles. To slow atomic and molecular motion enough for detailed study, intense chilling to temperatures near absolute zero (0 K, or -273.15° C, or -459.67° F) was needed. At such cold temperatures, however, gases normally condense and freeze.

      Chu and associates made an apparatus that allowed gases to be chilled to within a fraction of a degree of absolute zero without freezing. It consisted of six laser beams that bombard the gas's constituent particles from all directions, slowing their motion. The laser light acts much like an extremely thick liquid, which has been dubbed optical molasses, that slows movement of the particles. Individual atoms thus can be studied in great detail, and scientists can get glimpses of their inner structure, the Royal Academy observed.

      The apparatus created a glowing pea-sized cloud containing about one million chilled atoms. In the initial experiments Chu's group cooled atoms to a temperature of about 240 microkelvins (μK), or 240 millionths of a degree above absolute zero. Atoms at that temperature were slowed to a speed of about 30 cm (12 in) per second. Subsequent addition of magnetic coils to Chu's device allowed scientists to trap the atoms so that they could be studied or used for experiments.

      Phillips and his associates designed a similar experiment, developing several new methods for measuring temperature. By 1988 his group had achieved temperatures of 40 μK. Between 1988 and 1995 Cohen-Tannoudji and his colleagues made further advances, finally cooling atoms to a temperature within 1 μK, which corresponded to a speed of only 2 cm (0.8 in) per second.

      “Intensive development is in progress concerning laser cooling and the capture of neutral atoms,” the Academy noted. “Among other things, Chu has constructed an atomic fountain, in which laser-cooled atoms are sprayed up from a trap like jets of water.” Chu visualized the device as the basis of a new generation of ultraprecise atomic clocks. Existing atomic clocks are accurate to about one second in 32 million years. Chu's work could make them accurate to one second in three billion years.


Prize for Physiology or Medicine
      An American scientist who discovered an entirely new kind of disease-causing agent, called a prion, won the 1997 Nobel Prize for Physiology or Medicine. Prions are believed to cause a number of degenerative brain diseases in humans and other animals. They include bovine spongiform encephalopathy (BSE), or “mad cow” disease, which forced wide destruction of cattle herds in the U.K. beginning in the late 1980s, and Creutzfeldt-Jakob disease (CJD) in humans. Recent evidence suggested that a newly discovered variant of CJD can be transmitted from cows with BSE to humans.

      The Nobel Assembly of the Karolinska Institute, Stockholm, awarded the prize to Stanley Ben Prusiner of the University of California, San Francisco. It was the first time since 1987, and only the 10th time in the last 50 years, that the prize had gone to a single scientist. Nobel Prizes often have recognized originators of unpopular theories who were finally vindicated after years of struggle against opposition from colleagues. As of 1997, however, the prion controversy showed little sign of ending, with skeptics questioning whether prions exist and with some insisting that BSE, CJD, and other diseases actually are caused by still-undiscovered viruses.

      “Stanley Prusiner has added prions to the list of well known infectious agents including bacteria, viruses, fungi and parasites,” the Nobel Assembly stated. “[His] discovery provides important insights that may furnish the basis to understand the biological mechanisms underlying other types of dementia-related diseases, for example Alzheimer's disease, and establishes a foundation for drug development and new types of medical treatment strategies.”

      Prusiner was born on May 28, 1942, in Des Moines, Iowa, and was educated at The University of Pennsylvania (A.B., 1964; M.D., 1968). He began his research in 1972 after a patient died of CJD, a rare brain disease that results in dementia. Other scientists had established that CJD, and related conditions termed kuru and scrapie, could be transmitted in brain tissue. Kuru occurred among cannibalistic people in Papua New Guinea who ate the brains of tribesmen who had been infected with kuru. Scrapie is a brain disease in sheep that causes the animals to scratch and scrape off their skin. Nevertheless, no conventional agent could be isolated from infected tissue. Furthermore, the tissue remained infectious despite treatment that would have destroyed the DNA or RNA of any viruses or bacteria present.

      Scientists had proposed several theories about the agent responsible for these diseases. Some blamed an unusual, slow-acting virus. In the 1960s British scientists Tikvah Alper and J.S. Griffith proposed that an infectious agent lacking nucleic acid could cause scrapie. “[It was] a sensational hypothesis since at the time all known infectious agents contained the hereditary material DNA or RNA,” the Nobel Assembly explained.

      Prusiner and his associates embraced this idea. By 1982 they had announced discovery of an unusual protein in the brains of scrapie-infected hamsters that was not present in healthy animals. To describe this “proteinaceous infectious particle” Prusiner coined the term prion. Whereas “the scientific community greeted this discovery with great skepticism,” the Assembly stated, “an unwavering Prusiner continued the arduous task to define the precise nature of this novel infectious agent.”

      Prusiner's group later showed that humans and other animals have a gene that specifies the production of prion protein. The protein's amino acid chain can fold into two distinct forms with different three-dimensional structures. One is a tightly coiled, unstable, normal form that does not cause disease. The other is an unwound, more stable, abnormal form. Prusiner's research indicated that the abnormal protein causes CJD, scrapie, and other prion diseases by a catalytic process in which it, on contact with the normal protein, causes the latter to change its structure and become abnormal. In a chain reaction ever more of the abnormal protein is produced, and after months or years it finally accumulates to levels that cause obvious brain damage.

      Prusiner's work could help scientists understand Alzheimer's disease and other more common brain disorders. For example, some researchers believed that Alzheimer's disease is caused by a structural change in certain nonprion proteins, which leads to the accumulation of abnormal deposits in the brain. His research also suggested possible ways of treating and preventing prion diseases in humans and animals. Prusiner's group, for instance, was trying to develop drugs that attach to normal prion protein and stabilize it, so that the protein resists unwinding. Prusiner also suggested breeding sheep and cows that lack the prion gene, which did not seem essential for normal life.


▪ 1997


Prize for Peace
      Not inclined to shy away from international conflicts, the Norwegian Nobel Committee gave worldwide publicity to the dissident movement in East Timor by awarding the 1996 Nobel Prize for Peace to two East Timorese activists, Bishop Carlos Filipe Ximenes Belo and José Ramos-Horta. East Timor, which occupies the eastern half of the island of Timor, was a somewhat neglected colony of Portugal for most of the 20th century. An independence movement in the mid-1970s prompted Portugal to withdraw from the island in November 1975 when the leading warring faction, the leftist group Fretilin, declared independence for East Timor. This freedom, however, did not last long. Neighbouring Indonesia, with the tacit approval of Western nations concerned about the spread of communism, invaded East Timor in early December and incorporated it as a province the following year. The Indonesian government used military might to impose its will on a noncompliant population. Human rights organizations estimated that one-third of the 600,000 inhabitants lost their lives in the years that followed Indonesia's control of the territory. Although Indonesia called East Timor its 27th province, it was not recognized as such by the United Nations or any nation except Australia.

      In naming the award recipients, the Nobel Committee did not mince words when it described Indonesia's 20-year rule as “systematic oppression.” Indonesia expressed “regret” over the committee's choices, particularly that of the exiled activist José Ramos-Horta, a longtime proponent of independence. The 46-year-old former guerrilla was first exiled from East Timor in 1970 by the Portuguese but returned in 1972 to participate in the civil war with the Fretilin faction before leaving in 1975, only days before Indonesian troops took control. He remained in exile in Australia. Later renouncing his connections to guerrilla forces, Ramos-Horta sought international support for an ambitious peace plan for the region; he also served on the faculty of the University of New South Wales, Sydney.

      Belo, a 48-year-old native Timorese, was ordained a Roman Catholic bishop in 1983. As a patriot and spiritual leader of a territory that was more than 90% Catholic, he was the foremost critic of the brutal tactics of Indonesian President Suharto, who ruled a country that was 90% Muslim. Belo's high profile and outspoken nature made him a target for at least two attempts on his life, one in 1989 and the other in 1991. His protests were most notable following the massacre of about 200 demonstrators at a cemetery in Dili, the capital, in November 1991. He personally ushered many of the wounded to safety. In an open letter written in July 1994, he outlined his concern for the East Timorese people and proposed that the Indonesian government reduce its troops, curtail repressive measures, extend freedoms to the Catholic Church, permit free speech, enter dialogue with international groups, and allow East Timor to hold a democratic referendum on self-determination or, barring that, to create legislation granting East Timor special territorial status and greater autonomy. In his speech accepting the prize in December, Belo urged a nonviolent resolution of the problem, citing the example of 1964 Nobel laureate Martin Luther King, Jr. (TOM MICHAEL)

Prize for Economics
      The awarding of a Nobel Prize comes with more than just a hefty sum of money ($1,120,000 accompanied each prize in 1996). There is also immediate international fame and sudden widespread recognition for research that previously may have gone unnoticed outside the narrow confines of academia. The recipients, who are generally notified of the award by an early-morning phone call, may awaken to media pressures to which they are unaccustomed. Such was the case with William S. Vickrey, the Canadian-born economist at Columbia University, New York City, who shared the 1996 Nobel Memorial Prize in Economic Science with Scottish-born James Alexander Mirrlees of the University of Cambridge. Vickrey, perhaps straining under a flurry of unprecedented activity and scrutiny, died three days after receiving the honour, apparently of a heart attack. Upon selection, the two economists, who did not work together, were lauded for their analytic research on economic incentives in situations with incomplete, or asymmetrical, information.

      The area of microeconomics on which the pair worked is related to game theory, a branch of mathematics that examines how the players of a game affect its outcome by revealing or shielding information from one another. Vickrey and Mirrlees helped elucidate situations in which incomplete information poses unforeseen problems. For example, a government that hopes to institute a progressive income tax system that is both efficient and equitable must consider the possibility that stepped income brackets with increasing tax penalties may affect a worker's incentive to earn greater wages and, consequently, distort productivity. This “optimal income tax” problem parallels the “moral hazard” problem, which is exemplified by an insurance policy that offers such sizable coverage that a policyholder may take greater than usual risks. Classical economic models, which assume that all parties have access to the same information, tend not to incorporate incentives and similar variables into their equations.

      Vickrey was born June 21, 1914, in Victoria, B.C., and was educated at Yale University (B.S., 1935) and Columbia University (M.A., 1937; Ph.D., 1947), where he taught throughout his career. Because of his interest in human welfare, he often chose projects that had practical applications. His studies of traffic congestion concluded that pricing on commuter trains and toll roads should vary according to usage, with higher fares and tolls during peak-use periods. This time-of-day cost structure was later widely adopted by electric and telephone utilities. Although proposals of this kind gained him the audience of city planners worldwide, few of his ideas were adopted at the time. In his influential article “Counterspeculation, Auctions, and Competitive Sealed Tenders” (1961), he proposed what came to be known as the Vickrey auction, which, through sealed bidding, awards the auctioned item to the holder of the highest bid but at the sum bid by the second highest bidder. According to Vickrey, in guaranteeing the lower price, both buyers and sellers would benefit, because bidders would be more likely to bid what they believed the item to be worth, as opposed to submitting a lowball bid and risking losing the item for a sum less than the item's perceived value.

      Born July 5, 1936, in Minnigaff, Scot., Mirrlees studied mathematics at the University of Edinburgh (M.A., 1957) and Trinity College, Cambridge (Ph.D., 1963). He taught at the University of Oxford (1969-95) and at Cambridge. His technically refined mathematical skills complemented Vickrey's theoretical creativity, and his groundbreaking models and equations, published in the 1970s, illustrated the “optimal income taxation” and “moral hazard” problems often treated in Vickrey's books. Mirrlees's methodology became the standard in the economics of informational asymmetries and was used by a generation of later economists in a variety of applications. (TOM MICHAEL)

Prize for Literature
      Polish poet Wisława Szymborska was little known outside her country before being chosen to receive the 1996 Nobel Prize for Literature. The reclusive poet, who had published only seven volumes of verse in Poland during the past three decades, was considered difficult to translate owing to the subtlety of her technique. Collections of her poetry did appear, however, in several languages; her English-language titles were Sounds, Feelings, Thoughts (1981), People on a Bridge (1990), and View with a Grain of Sand (1995). Observers such as Polish poet Czesław Miłosz, winner of the 1980 Nobel Prize for Literature, regarded the selection of Szymborska as international confirmation of the brilliance of Polish poetry in the period following World War II. Szymborska, along with fellow poets Zbigniew Herbert and Tadeusz Różewicz, held common witness to the struggles of modern Poland—World War II, the Holocaust, Soviet occupation, postwar Stalinism, martial law, and transition to democracy. She tempered this, however, with a strong humanism and a desire to deal with sophisticated philosophical issues.

      Szymborska diverged from her compatriots in her universal approach to personal issues; daily occurrences were regularly reexamined in broad perspective in her verse. Her delicate style was classical in its wit, depth, and detachment yet decidedly modern with its irony and nonchalance. Her language was unpretentious, reflecting the stripped-down, straightforwardness of social realism, which held sway in Eastern European poetry in the mid-1950s. Her tone was often wry and conversational.

      Her plainspoken language, however, belied a complexity of thought, in both structure and content. These hidden depths were exemplified in the poem “The Three Oddest Words” (1996):

      When I pronounce the word Future,

      the first syllable already belongs to the past.

      When I pronounce the word Silence,

      I destroy it.

      When I pronounce the word Nothing,

      I make something no nonbeing can hold.

      Szymborska was born on July 2, 1923, in the town of Bnin (now part of Kornik) in western Poland, near Poznan. From 1931 she lived in Krakow, where in 1945-48, at Jagiellonian University, she studied literature and sociology. Her verse was first published in 1945, and her first two books of poetry, which she had since disclaimed for their slavish devotion to social realism, appeared in 1952 and 1954. Her first collection published after the Soviet loosening of censorship, Wołanie do Yeti (1957; “Calling Out to Yeti”), commented on Stalinism through the title character, Yeti, or the Abominable Snowman. Later volumes included Sól (1962; “Salt”) and Sto pociech (1967; “No End of Fun”). The title work of Wszelki Wypadek (1972; “Could Have”) examined chance, one of her common themes. Later books included Wielka liczba (1977; “A Large Number”), Ludzie na móscie (1986; “The People on the Bridge”), and Koniec i poczatek (1993; “The End and the Beginning”).

      From 1953 to 1981 Szymborska worked for the weekly Zycie literackie (“Literary Life”), contributing a column entitled Lektury nadobowiazkowe (“Noncompulsory Reading”); these columns were collected into bound editions in 1973, 1981, and 1992. In the 1980s she contributed to the periodicals Arka and Kultura—the latter was an expatriate journal published in Paris. Symborska was also a noted translator, with a particular expertise in French poetry of the 16th and 17th centuries.


Prize for Chemistry
      The 1996 Nobel Prize for Chemistry was awarded to a group of British and U.S. researchers who discovered fullerenes, a previously unrecognized form of carbon, the discovery of which opened a new branch of chemistry. Fullerenes are hollow, spherical clusters of carbon atoms bonded together into highly symmetrical, cagelike structures. Bonds in the prototype molecule, C60, resemble the seams on a soccer ball. Geometrically, C60 is a polygon with 60 vertices and 32 faces, 12 of which are pentagons and 20 of which are hexagons. In the 1985 paper describing their work, the discoverers chose a whimsical name for C60. They called it buckminsterfullerene after R. Buckminster Fuller, the U.S. architect whose geodesic dome design, the best-known example of which was the U.S. pavilion for Expo 67 in Montreal in 1967, had a similar structure. Chemists began calling C60 molecules buckyballs. The name and the elegant netlike structure of fullerenes galvanized public fancy in a way that few other basic advances in chemistry had.

      “For chemists the proposed structure was uniquely beautiful and satisfying,” the Royal Swedish Academy of Sciences said in its citation. “It corresponds to an aromatic, three-dimensional system in which single and double bonds alternated, and was thus of great theoretical significance.”

      The prize, worth $1,120,000, was shared by Richard E. Smalley and Robert F. Curl, Jr., of Rice University, Houston, Texas, and Sir Harold W. Kroto of the University of Sussex, Brighton, Eng. Kroto, Curl, and Smalley did their landmark experiment over a period of 11 days in 1985. The Swedish Academy noted the assistance of their graduate students James R. Heath and Sean C. O'Brien, who did not share in the award.

      At the time of the discovery, Kroto was using microwave spectroscopy techniques to analyze gas in carbon-rich giant stars and clouds of gas in interstellar space. He had discovered long, chain-like molecules of carbon and nitrogen in stellar atmospheres and in gas clouds. Kroto wanted to study the vaporization of carbon to find out how these carbon chains form, but he lacked the apparatus to vaporize carbon. He mentioned the problem to a friend, Curl, who worked with Smalley. Curl told Kroto that Smalley had designed and built an instrument that seemed perfect for Kroto's research. Smalley was an authority on cluster chemistry, the study of aggregates of atoms or molecules that range in size between the microscopic and the visible. Specifically, Smalley was interested in clusters of metal atoms of potential use in electronic semiconductor materials. His laboratory instrument, a laser-supersonic cluster beam apparatus, could vaporize almost any known material into a plasma of atoms and then be used to study the resulting clusters.

      Kroto thus traveled to Rice University to work with Smalley and Curl on carbon vaporization and long-chained carbon molecules. The spectra from the first experiments did, indeed, have peaks that indicated the presence of those molecules. The spectra, however, also had peaks corresponding to a seventh, previously unrecognized form of carbon. Peaks on the spectra suggested molecules containing even numbers of carbon atoms—from 40 to more than 100. Under certain laser-vaporization conditions, most of the new carbon molecules had a structure of C60. Kroto arrived at Rice on Sept. 1, 1985, and dispatched a research paper announcing the discovery of the structure of C60 on September 12; the report was published on November 14.

      Kroto was born on Oct. 7, 1939, in Wisbech, Cambridgeshire, Eng., and received a Ph.D. from the University of Sheffield, Eng., in 1964. He joined the faculty at Sussex in 1967 and was named Royal Society research professor in 1991. Smalley was born on June 6, 1943, in Akron, Ohio, and worked as a research chemist with Shell Chemical Co. before receiving a Ph.D. from Princeton University in 1973. He joined the Rice faculty in 1976. Curl was born on Aug. 23, 1933, in Alice, Texas, and received a Ph.D. from the University of California, Berkeley, in 1957. He joined Rice University in 1958.


Prize for Physics
      Three U.S. scientists shared the 1996 Nobel Prize for Physics for their 1972 discovery of superfluid helium-3 (3He), one of nature's most bizarre liquids. A superfluid lacks the internal friction that exists in normal liquid and thus flows without resistance. Superfluid 3He, for example, can ooze through cracks and pores that normal liquids cannot penetrate, climb the walls of containers and pour out, and even flow uphill.

      Douglas Osheroff, David Lee, and Robert Richardson, however, did not receive the prize, which totaled $1,120,000, because 3He can perform magical tricks. Rather, superfluid 3He allowed scientists to study directly in easily visible systems the strange quantum mechanical effects that previously could be studied only indirectly in invisible molecules, atoms, and subatomic particles. “The study of this exotic quantum liquid has led to concepts that are of general importance,” the Royal Swedish Academy of Sciences said in its citation.

      The research, for instance, helped scientists understand how the first structures began to form in space microseconds after the big bang, the primordial explosion that formed the universe. Superfluid 3He is anisotropic: it displays different properties in different directions along which the property is measured. The physical transitions from one form of superfluid 3He to another have been used as a model for the cosmological phase transitions thought to have occurred a split second after the big bang, the Swedish Academy said. Experts believed that in the early universe, such transitions may have formed strange, linelike defects termed cosmic strings. These strings, in turn, may have formed the first physical structures in the universe. Cosmic strings have special properties that make them ideal candidates for giving rise to structures that evolved into the first stars and galaxies. For instance, cosmic strings cannot have ends and must form closed loops. They are trillions of times thinner than an atom and yet so immensely dense that a cosmic string one meter long would weigh 1020 kg.

      Superfluid 3He also may help in understanding and developing high-temperature superconductors, the academy added. These ceramic materials, discovered in 1986, lose resistance to the flow of electricity at higher temperatures than did previous superconductors. Like 3He, they also have different properties in different directions. The superfluid thus might be used to model their behaviour and develop general theories about how to make materials that become superconducting closer to room temperature.

      In 1966, Lee and Richardson were professors at Cornell University, Ithaca, N.Y. Osheroff was a professor at Stanford University. At the time of the discovery of superfluid 3He, Richardson and Lee were senior researchers at Cornell, and Osheroff was a graduate student on their research team.

      Richardson, Lee, and Osheroff discovered superfluidity in 3He by a fortunate accident. The group was not looking for superfluidity but was instead studying other aspects of superfluid 3He. They were experts in low-temperature physics and had built their own cooling apparatus at Cornell. But in their initial measurements of cooled 3He, a problem occurred with their thermometer as temperatures dropped below a few thousandths of a degree of absolute zero (-273° C). Therefore, they decided to monitor the internal pressure of the 3He sample while applying external pressure that varied with time.

      “It was the research student Osheroff who observed a change in the way the internal pressure varied with time,” the Nobel citation pointed out. Even the most experienced senior researchers are tempted to dismiss such small deviations as more or less inexplicable peculiarities of the equipment, the citation explained. “He did not put the observation aside as being due to some feature of the apparatus, but instead insisted that it was a real effect.”

      Lee was born on Jan. 20, 1931, in Rye, N.Y., and received a Ph.D. from Yale University in 1959. Osheroff was born on Aug. 1, 1945, in Aberdeen, Wash., and received a Ph.D. in 1973 from Cornell University. Richardson was born on June 26, 1937, in Washington, D.C., and received a Ph.D. in 1966 from Duke University, Durham, N.C. (MICHAEL WOODS)

Prize for Physiology or Medicine
      Australia's Peter Doherty and Switzerland's Rolf Zinkernagel shared the 1996 Nobel Prize for Physiology or Medicine for their simple explanation of how the immune system distinguishes virus-infected cells from normal cells. In this key step in battling viral infections, specialized white blood cells termed cytotoxic T cells, or killer T cells, somehow recognize virus-infected cells and then eliminate them, but these T cells leave normal body cells unharmed.

      Their discovery established a foundation for understanding how the immune system makes critical decisions about whether a cell is “self” or “nonself.” A normally functioning immune system does not harm “self” cells that are part of the body. Yet it can recognize, and target for death, infected cells, invading microorganisms, and other foreign materials or antigens.

      “The work fundamentally changed our understanding of the development of the immune response,” said the Nobel Assembly at the Karolinska Institute in Stockholm, which awards the medicine prize. “Apart from vaccines, the work has guided attempts to use the immune system to hunt down and destroy microscopic cancer cells that have escaped from tumours. It has also helped scientists as they design ways to suppress harmful immune system attacks on the body's own tissue, as seen in multiple sclerosis and diabetes.”

      Doherty and Zinkernagel did their landmark research on laboratory mice between 1973 and 1975 while at the John Curtin School of Medical Research in Canberra, Australia. Doherty in 1996 was chairman of the department of immunology at St. Jude Children's Research Hospital in Memphis, Tenn. He was born on Oct. 15, 1940, in Australia and received a veterinary medicine degree in 1966 from the University of Queensland, Australia, and a Ph.D. in 1970 from the University of Edinburgh. Zinkernagel was in 1996 head of the Institute of Experimental Immunology at the University of Zürich, Switz. He was born on Jan. 6, 1944, in Switzerland, received an M.D. in 1970 from the University of Basel, Switz., and a Ph.D. in 1975 from Australian National University, Canberra.

      When Doherty and Zinkernagel began their research, they wanted to identify causes of the fatal destruction of brain cells in mice infected with lymphocytic choriomeningitis virus (LCMV). In the experiments they developed an assay to test their theory that killer T cells caused the damage while attacking virus-infected cells. They mixed T cells from sick mice with mouse cells infected with LCMV and found that the T cells did, indeed, destroy the infected cells. By lucky accident, all the mice were members of the same inbred strain. They thus were as genetically alike as identical twins and had identical major histocompatibility complex (MHC) antigens.

      There was an unexpected discovery when Doherty and Zinkernagel mixed the T cells with virus-infected cells from another strain of mice. Doherty and Zinkernagel expected that the T cells, primed for attack, would strike the instant they came into contact with LCMV-infected cells. Instead, they acted as if they did not see the virus. Recognition, Doherty and Zinkernagel suspected, required the presence of some other protein on the surface of an infected cell. Further research showed that T cells must recognize two separate signals on an infected cell. One is the signal of a foreign invader, the virus inside the infected cell. The other is the “self” signal from the cell's MHC antigens. In Doherty and Zinkernagel's experiments, the T cells were looking not just for virus-infected cells but also for cells with the MHC antigens characteristic of the original strain of mice. The T cells could not recognize MHC antigens from the new strain, and no immune response occurred. This concept of simultaneous recognition of both self and foreign molecules formed the basis for a new understanding of cellular immunity, the Nobel Assembly said.

      Researchers then began using cytotoxic T cells to kill viruses in bone marrow prior to bone marrow transplants. They also began developing vaccines, including those for certain forms of cancer and AIDS, that produce cytotoxic T cells.


▪ 1996


Prize for Peace
      Partly as a protest against nuclear testing by China and France, the Norwegian Nobel Committee awarded the 1995 Nobel Prize for Peace to the physicist and antinuclear activist Joseph Rotblat and the Pugwash Conferences on Science and World Affairs that he had headed for many years. A physicist who had helped develop the atomic bomb, Rotblat left the project to pursue peaceful uses of nuclear energy. Recognition of the efforts of these supporters of nuclear disarmament and arms limitations came in the year that marked the 50th anniversary of the bombings of the Japanese cities of Hiroshima and Nagasaki during World War II.

      Born on Nov. 4, 1908, in Warsaw and educated in Poland, Rotblat went to the University of Liverpool, England, as a lecturer in 1939. He then became a member of the British team that joined U.S. scientists at Los Alamos, N.M., to work on the Manhattan Project. Although he was uncomfortable about participating in the creation of an atomic bomb, Rotblat initially believed that the weapon would be used only to deter a German threat. After learning in 1944 that it would be used to contain the Soviet Union, a World War II ally, he left the project and returned to Liverpool. After the war Rotblat became a British citizen, and he dedicated himself to peaceful applications of physics, primarily in nuclear medicine. He directed research in nuclear physics at the University of Liverpool (1945-49) and was a professor at the University of London's St. Bartholemew's Hospital Medical College (1950-76).

      In 1955 Rotblat joined a group of scientists in signing a manifesto advanced by Bertrand Russell and Albert Einstein that urged an end to nuclear arms. “Such weapons,” it said, “threaten the continued existence of mankind.” No fewer than 10 of the signatories were past or future Nobel laureates. From the group's commitment came the first of the annual Pugwash Conferences, named for the village in Nova Scotia where the first meeting was held in 1957. Some 25 invited participants, mostly scientists, met each year to hear and read papers and to discuss critical issues on arms control. They were encouraged to take the antinuclear message home with the hope of influencing policy changes in their respective countries. Hiroshima was the site of the 1995 meeting. Rotblat served as secretary-general of the London-based organization from 1957 to 1973 and as president after 1988.

      One purpose of the conferences was to foster a dialogue between opposing sides in the arms race, and the speakers often included scientists and government officials in charge of the nuclear arms programs in their own countries. During the Cold War years, some U.S. officials criticized the Pugwash Conferences as dupes of the Soviet Union.

      While there was no clear evidence that the conferences directly led to arms reduction, it was thought that the discussions were not without influence. There was evidence that contacts made in the meetings contributed to the resolution of events such as the Cuban missile crisis in 1962.

      Rotblat's published works include Science and World Affairs (1962), Pugwash (1967), Scientists in the Quest for Peace (1972), Scientists, the Arms Race and Disarmament (1982), Coexistence, Co-operation and Common Security (1989), Building Global Security Through Co-operation (1990), Towards a Secure World in the 21st Century (1991), and A World at the Crossroads (1994). Many of the works reflected his commitment to engaging scientists of all nations to work for world peace. (MARGARET BARLOW)

Prize for Economics
      In 1995 the University of Chicago faculty added another Nobel laureate to its growing list of notables. For the fifth time in six years, one of its professors was awarded the Nobel Memorial Prize for Economic Science. The latest recipient, Robert Emerson Lucas, Jr., was honoured for having developed and applied the hypothesis of rational expectations.

      Ever since the Great Depression of the 1930s, whenever the U.S. government wanted to correct the direction of the economy, it did so by raising or lowering taxes or interest rates. However, during the recession of the 1970s, lowering interest rates and infusing money into the economy resulted in higher, not lower, unemployment and excessive inflation.

      Lucas offered an explanation of this unexpected result based on a simple observation: that business and industry, workers, and consumers were too smart to be manipulated over and over again. According to his theory, people had learned to anticipate government policies to direct the economy and then adjusted their own course of action on the basis of those “rational expectations.” For example, during the recession the government had lowered taxes because in the past when businesses expected increased profits, they hired more workers and paid them higher wages. The government economists knew that this policy also caused prices to rise, but the increased inflation was viewed as a trade-off for higher employment. In the 1970s, though, the government's strategy backfired. Workers demanded even higher wages to offset rising prices, which caused inflation and unemployment to skyrocket.

      Despite interest in Lucas' early publications, such as Rational Expectations and Econometric Practice (1981; coauthored with colleague Thomas J. Sargent) and Studies in Business-Cycle Theory (1981), government economists during the 1980s persisted in trying to apply the old models.

      In its announcement of the 1995 prize, worth $1 million, the Swedish Academy said that Lucas, through his development and application of the rational expectations hypothesis, had “transformed macroeconomic analysis and deepened our understanding of economic policy.” (Macroeconomics is the study of an economic system as a whole, involving how various sectors of an economy interrelate.) Rational expectations had become “a standard part of the macroeconomic toolbox,” according to the Swedish Academy. Lucas' theory changed the way government policy makers around the world discussed and developed economic tactics.

      Lucas was born Sept. 15, 1937, in Yakima, Wash. He received a B.A. in history (1959) and a Ph.D. in economics (1964) from the University of Chicago, where he was a student of 1976 Nobel laureate Milton Friedman. Lucas taught economics from 1963 to 1974 at Carnegie Mellon University, Pittsburgh, Pa., after which he joined the department of economics faculty at his alma mater. Lucas' later publications, some coauthored by various colleagues, revealed his interest in other aspects of macroeconomics. (MARGARET BARLOW)

Prize for Literature
      The Irish poet Seamus Heaney, long considered a chief contender for the award, won the Nobel Prize for Literature in 1995. The Swedish Academy praised Heaney for “works of lyrical beauty and ethical depth, which exalt everyday miracles and the living past.” It also commended his treatment, without political rhetoric, of the conflict in his native Northern Ireland. A highly popular poet and well-liked man, Heaney was the fourth Irish writer, after William Butler Yeats (1923), George Bernard Shaw (1925), and Samuel Beckett (1969), to win the Nobel.

      Many critics called Heaney the greatest Irish poet since Yeats. Given their different backgrounds and approaches to poetry, the two appeared to have little in common, yet they shared an experience that was deeply rooted both in the Western classics and in Irish myth and history. Too, their works were similarly rich with cadences unique to Irish speech. For his use of everyday language and rural imagery to frame universal themes, Heaney sometimes was also compared to the American poet Robert Frost and the English poet and novelist Thomas Hardy.

      Born on April 13, 1939, in County Londonderry, northwest of Belfast, Heaney was the eldest of nine children in a tight-knit Roman Catholic family. Their farm bordered a large Protestant estate, and from his childhood he felt “symbolically placed” between the two clashing cultures. Heaney studied and later lectured at Queen's University, Belfast. In his first major collection of poems, Death of a Naturalist (1966), he established his dual roots in the Irish soil and the literary realm. In one of his best-known poems, “Digging,” he endowed his father and grandfather's digging of peat with a universal richness that became a metaphor for his own writing of poetry. Indeed, much of Heaney's early work sprang from his happy childhood experiences and his life on a farm and from his home and family, including his wife and three children.

      In 1972 Heaney moved to the Irish republic. He later came to divide his time between Dublin, the University of Oxford, where he was professor of poetry from 1989 to 1994, and Harvard University, where from 1985 he was Boylston professor of rhetoric and oratory. Many of the poems published after his move, such as those in North (1975) and Field Work (1979), expressed the struggles of living in the political strife of Northern Ireland. The power of Heaney's words, never loud, never preaching, was in their subtlety, and the power of his images was in their familiarity. Again and again he referred to an individual's experience as the basis of poetry.

      As the translator of Sweeney Astray (1983), about a legendary Irish king who is cursed by a Christian cleric and wanders the land as a mad beast, half bird and half man, Heaney revitalized an ancient poem with contemporary themes. In the title poem of Station Island (1984), Heaney used a narrative form, influenced by the work of Dante, to describe a journey set against the agonizing background of Northern Ireland's politics. As a teacher Heaney also explored the role of poetry. In his lectures, recorded in volumes that include The Place of Writing (1989) and The Redress of Poetry (1995), he examined writing under every condition, from creative freedom to imprisonment. Underlying the lyricism of his work was a belief that poetry's purpose should be in the service of language, not of a narrow political philosophy. (MARGARET BARLOW)

Prize for Chemistry
      The 1995 Nobel Prize for Chemistry was awarded to Paul Crutzen, a Dutch citizen with the Max Planck Institute for Chemistry, Mainz, Germany; F. Sherwood Rowland of the University of California, Irvine; and Mario Molina of the Massachusetts Institute of Technology. The scientists' research alerted the world to the possibility that human-manufactured gaseous compounds could destroy the stratospheric ozone layer, which protects life on Earth from damaging solar ultraviolet (UV) radiation. “By explaining the chemical mechanisms that affect the thickness of the ozone layer, the three researchers have contributed to our salvation from a global environmental problem that could have catastrophic consequences,” the Royal Swedish Academy of Sciences said in its citation.

      The ozone layer is a region of the atmosphere, roughly 15-48 km (9-30 mi) in altitude, that contains small quantities of ozone. Ozone is a form of oxygen that comprises three atoms (O3) rather than the two atoms (O2) found in ordinary molecular oxygen. Despite its sparse distribution, ozone absorbs most of the Sun's UV light, which otherwise would cause severe sunburn and skin cancer in people and adversely affect other organisms.

      In 1970 Crutzen took some of the first steps in calling attention to the ozone layer's vulnerability. He showed that the nitrogen oxides NO and NO2 act as catalysts to speed decomposition of ozone. Those compounds form in the atmosphere from nitrous oxide (N2O) released naturally at the surface by soil bacteria. A year later the U.S. scientist Harold Johnston warned that a planned fleet of commercial supersonic transport (SST) aircraft would release nitrogen oxides directly into the ozone layer and thus could damage it. Crutzen's and Johnston's work sparked strong debate among scientists and decision makers and marked the beginning of intensive research into the chemistry of the atmosphere.

      The next major advance came in 1974, when Rowland and Molina published a study of the threat posed by chlorofluorocarbon (CFC) gases. They showed that CFCs, which were widely used as aerosol-spray propellants, air-conditioning refrigerants, and foaming agents in plastics manufacture, were transported to the ozone layer. There, under the influence of UV light, they participated in reactions that destroyed ozone molecules. Rowland and Molina wrote that continued use of CFCs would seriously deplete the ozone layer within decades. That prediction triggered strong scientific controversy. CFCs were a mainstay of modern society, and no substitutes were available. Chemists knew that CFCs were extremely nonreactive at the Earth's surface and thus believed that they posed no environmental threat. “Many were critical of Molina and Rowland's calculations, but yet more were seriously concerned by the possibility of a depleted ozone layer,” the Swedish Academy said. “Today we know that they were right in all essentials. It was to turn out that they had even underestimated the risk.”

      In 1985 concerns about ozone depletion intensified after English researchers detected the Antarctic ozone hole, a region of the atmosphere that becomes seriously depleted in ozone every austral spring. The work by Crutzen, Rowland, Molina, and other scientists led to a 1987 treaty, the Montreal Protocol, in which the industrialized countries agreed to phase out the production of CFCs.

      Crutzen was born Dec. 3, 1933, in Amsterdam and received a Ph.D. in 1973 from Stockholm University. Rowland was born June 28, 1927, in Delaware, Ohio, and earned a Ph.D. in 1952 from the University of Chicago. Molina, born March 19, 1943, in Mexico City, took his Ph.D. in 1972 from the University of California, Berkeley. (MICHAEL WOODS)

Prize for Physics
       Frederick Reines of the University of California, Irvine, and Martin L. Perl of Stanford University shared the 1995 Nobel Prize for Physics for their respective discoveries of the neutrino and the tau lepton, members of the family of fundamental subatomic particles that make up all matter in the universe. Reines worked with the late Clyde L. Cowan, Jr., at Los Alamos (N.M.) National Laboratory in the 1950s to confirm the existence of the neutrino. Perl and collaborators at the Stanford Linear Accelerator Center (SLAC) identified the tau lepton in the 1970s.

      Reines and Perl discovered what the Royal Swedish Academy of Sciences termed in its citation “two of nature's most remarkable fundamental particles.” Both discoveries were critical in developing the so-called standard model that physicists used to describe the subatomic particles that make up the cosmos and the interactions, or forces, between them. The standard model maintained that all matter consists of 12 kinds of particles. Six are leptons, a group that includes electrons—the negatively charged particles that orbit the central nucleus of atoms—as well as the muon, three kinds of neutrinos, and the tau lepton. Six others are quarks, which combine to make up the protons and neutrons in the nucleus. The 12 particles are divided into three families, each of which contains two leptons and two quarks.

      The work by Reines and Cowan in making the first definitive detection of neutrinos was critical for initial development of the standard model. Physicists first invoked the existence of the neutrino in the 1930s in order to uphold the law of conservation of energy, one of the most sacrosanct principles in physics. Although the law states that energy can be neither created nor destroyed, energy did seem to disappear in a certain form of radioactive decay called beta decay. To preserve the law, the Austrian-born physicist Wolfgang Pauli proposed that the missing energy is carried off by a particle that has no electric charge and rarely interacts with matter. The Italian-born physicist Enrico Fermi named the ghostly particle the neutrino, for “little neutral one.”

      Although physicists quickly accepted the neutrino as reality, the detection of a particle that seems to shun interactions was a formidable challenge. In 1956 Reines and Cowan “succeeded in a feat considered to border on the impossible” and “raised the neutrino from its status as a figure of the imagination to an existence as a free particle,” according to the Swedish Academy. Reines and Cowan built a simple detector that identified the interactions of neutrinos emanating from a nuclear reactor as they passed through a tank containing 400 litres (105 gallons) of water. The interactions were visible as faint flashes of light that registered on electronic devices monitoring the water. Their small neutrino detector was the forerunner of the huge detectors of the 1980s and '90s, which attempted to catch the elusive neutrinos that emanate from the Sun and other stars in huge water tanks, large volumes of the sea, and even Antarctic ice.

      Before Perl and his colleagues discovered the tau lepton in experiments carried out between 1974 and 1977, physicists thought that there were only two families of fundamental particles. The tau was the first evidence for a third family, which proved essential for completing the standard model. Perl and co-workers discovered the signature of the new lepton in particle debris produced when electrons were smashed into their antimatter counterparts, positrons, in a particle collider at SLAC. They named it tau, the first letter of the Greek word tritos, which means “third.”

      Reines, born March 16, 1918, in Paterson, N.J., received a Ph.D. degree from New York University in 1944. Perl was born June 24, 1927, in New York City and received a Ph.D. degree from Columbia University, New York City, in 1955. (MICHAEL WOODS)

Prize for Physiology or Medicine
      Three developmental biologists—the Americans Edward B. Lewis and Eric F. Wieschaus and the German Christiane Nüsslein-Volhard—won the 1995 Nobel Prize for Physiology or Medicine. They were honoured for their discoveries about a family of master genes that determine body architecture early in an embryo's development. The work, done between the 1940s and the 1970s, showed that a small number of critical genes map out the body's form. The biologists also identified genes that determine which organs form inside individual body segments, telling an insect embryo, for instance, where to grow wings, a fish where to build gills, or a human embryo to form eyes in the head rather than in the abdomen. The experiments cited by the Nobel Assembly at the Karolinska Institute in Stockholm involved the vinegar fly, or fruit fly, Drosophila melanogaster. It was the first Nobel Prize honouring basic research in developmental biology since 1935.

      The Nobel Committee remarked in its announcement of the award that the decision of Nüsslein-Volhard and Wieschaus to join forces on this project “was a brave decision by two young scientists at the beginning of their scientific careers. Nobody before had done anything similar and the chances of success were very uncertain.” Wieschaus responded at a press conference in Princeton by saying, “We were young and foolish, and it was worth trying.”

      Lewis, of the California Institute of Technology, did his research independently at that institution in the 1940s. Wieschaus, of Princeton University, and Nüsslein-Volhard, of the Max Planck Institute for Developmental Biology, Tübingen, Germany, collaborated on their research as young scientists in the 1970s. Others researchers later determined that what Lewis, Wieschaus, and Nüsslein-Volhard had discovered in Drosophila also applies to humans.

      Lewis studied genetic mutations that cause sections of a fly's body to develop abnormally. One such mutation, for instance, resulted in adult flies with an extra set of wings. By collecting and crossbreeding flies with other mutations and altered segments, he discovered a cluster of genes that control how individual body segments develop. The genes were arranged in head-to-tail fashion on the chromosomes, in the same order as the body segments they controlled. First came genes that controlled the development of the head region, next those that determined the architecture of the thorax, and, finally, those for the posterior. Lewis identified a family of such genes, which later were named homeotic selector genes.

      Wieschaus and Nüsslein-Volhard focused on earlier developmental stages in their research, which began in the late 1970s at the European Molecular Biology Laboratory, Heidelberg, West Germany. Because Lewis' research did not explain the key genetic events that cause an embryo to begin dividing into body segments and activate the homeotic genes, they set out to determine how a newly fertilized Drosophila egg developed into a segmented embryo. They treated flies with mutagens, chemicals that cause changes in genes. The mutated genes, in turn, caused the formation of abnormal body segments. Using a microscope with which two people could simultaneously study the same embryo, Wieschaus and Nüsslein-Volhard spent more than a year examining and classifying defects caused by the mutations. They eventually identified a small number of genes—out of the fly's 20,000—that are critical for determining the body plan. It was believed that the work of the three biologists would eventually help explain certain types of congenital malformations in humans.

      Lewis was born on May 20, 1918, in Wilkes-Barre, Pa., and received his Ph.D. degree from the California Institute of Technology, where he remained active in research. Wieschaus was born on June 8, 1947, in South Bend, Ind., and received a Ph.D. from Yale University, where he became professor of biology. Nüsslein-Volhard, who was born on Oct. 20, 1942, in Magdeburg, Germany, and received her Ph.D. from the University of Tübingen, was affiliated with that city's Max Planck Institute. (MICHAEL WOODS)

▪ 1995


Prize for Peace
      Controversy surrounded the Nobel Committee's decision to award the 1994 Nobel Prize for Peace to (“in alphabetical order”) Palestine Liberation Organization (PLO) Chairman Yasir Arafat, Israeli Foreign Minister Shimon Peres, and Israeli Prime Minister Yitzhak Rabin “for their efforts to create peace in the Middle East.” Criticism was aimed not only at the choice of Arafat, whose organization's primary aim had once been Israel's destruction, but also at Rabin and Peres, who had led offensives against Israel's neighbours. The prize was intended “to honour a political act which called for great courage on both sides” and to “serve as an encouragement to all the Israelis and Palestinians who are endeavouring to establish lasting peace in the region.”

      The Israeli Labour Party government's decision to negotiate with the PLO was met with fierce opposition. After Arafat and Rabin signed the Sept. 13, 1993, peace agreement with a historic handshake, militant forces on both sides tried to shatter the delicate accord.

      Arafat and Rabin both were born in the Middle East and grew up enemies. Arafat was born Rahman 'abd ar-Raˋuf al-Qudwah in Palestine on Aug. 24, 1929. Upon graduating with a degree in civil engineering from the University of Cairo in 1956, he joined the Egyptian army and fought in the Suez. While working as an engineer in Kuwait, he helped found al-Fatah, which became the military arm of the PLO, and in 1968 he gained the PLO chairmanship. Long considered a chief proponent of terrorism, Arafat was sometimes a target of it himself. His tendencies, at times, to act alone and to compromise won him enemies from within his own camp. Nevertheless, six months after the state of Palestine was declared in 1988, he was elected president of its provisional government.

      Rabin, born in Jerusalem on March 1, 1922, made his career in the military (1941-68), joining the Jewish Defense Forces against the Nazi-sponsored French regime in World War II, directing the defense of Jerusalem in Israel's war of independence (1948), and planning the winning strategy for the Six-Day War (1967). He was ambassador to the United States (1968-73) before entering politics as a Labour Party member. After a brief stint as minister of labour under Prime Minister Golda Meir, he himself became prime minister in June 1974. It was he who ordered a daring raid (July 1976) to rescue hostages seized by Palestinian terrorists and held at the airport at Entebbe, Uganda. Rabin was forced to resign his post in April 1977, but he regained the leadership of his party and the job of prime minister in June 1992.

      Born Shimon Perski in Wolozyn, Poland (now Valozhyn, Belarus), on Aug. 15, 1923, Peres immigrated to Palestine with his family in 1934. His mentor in the Zionist movement was David Ben-Gurion, Israel's first prime minister, who in 1948 put Peres in charge of the navy. From 1952 to 1965 he held various defense offices, with responsibility for increasing weapons production and initiating a nuclear program. Peres led the Labour Party from 1977 to 1992 but served only briefly as prime minister (1984-86). When Rabin recaptured the Labour leadership in 1992, Peres was named foreign minister. Although for many years he and Rabin had clashed over their party's direction, they agreed at last to put old rivalries aside to pursue a legacy of peace. (MARGARET BARLOW)

Prize for Economics
      John F. Nash of Princeton University, John C. Harsanyi of the University of California at Berkeley, and Reinhard Selten of the University of Bonn, Germany, shared the 1994 Nobel Memorial Prize in Economic Science for their achievements in establishing the foundations of what is known as game theory. Game theory, the Royal Swedish Academy of Sciences noted, “emanates from studies of games such as chess or poker,” in which “players have to think ahead [and] devise a strategy based on expected countermoves from the other player. Such strategic interaction also characterizes many economic situations, and game theory has therefore proved to be very useful in economic analysis.”

      Game theory has transformed modern business, replacing the classical economics of pure competition. It was invented in the 1940s by John von Neumann and Oskar Morgenstern. Much of its formal mathematical basis was set forth by Nash in “Non-cooperative Games,” his doctoral dissertation at Princeton University. Nash's equilibrium theory is still taught to determine when to stop changing bargaining strategies. It was his assumption that all players are rivals, using what they know about one another to operate in their own self-interest.

      Nash was born in 1928 in Bluefield, W.Va., and studied mathematics at the Carnegie Institute of Technology (now Carnegie Mellon University; B.S., M.S., 1948) and at Princeton (Ph.D., 1950). In 1951 he joined the staff of the Massachusetts Institute of Technology, but after an illness in the late 1950s, he returned to Princeton as a visiting scholar.

      Born in 1920 in Budapest, Harsanyi earned a doctorate (1947) in mathematics from the University of Budapest. He arrived in the United States in 1956 as a Rockefeller fellow at Stanford University (Ph.D., 1959) and was a research associate (1957) at Yale University before joining the faculty of the Haas School of Business at the University of California at Berkeley in 1964. He remained there until 1990, when he became professor emeritus. After the late 1960s, when he enhanced Nash's model by introducing the predictability of rivals' actions based on the chance that they would choose one move or countermove over another, Harsanyi's work embraced ethics as well as game theory. Among his contributions were formal investigations concerning appropriate behaviour and correct social choices among competitors. His numerous publications include A General Theory of Equilibrium Selection in Games (1988), co-written with Selten.

      Selten, the first German to receive the economics prize, was born in Breslau (now Wrocław, Poland) in 1930 and studied mathematics at the University of Frankfurt/Main (Diplom, 1957). He, too, expanded upon Nash's model in the 1960s, first by establishing theories for discriminating between reasonable and unreasonable game outcomes and later by incorporating the concept that strategies develop over time. In numerous publications he has explored mathematical systems in economics. He was a visiting professor at the University of California at Berkeley in the late 1960s and taught at the Free University of Berlin and the University of Bielefeld before joining the faculty at Bonn in 1984. Interested in applications of his work outside the field of economics, he participated in a 1976 conference at which game theory was used to predict (with limited success) future developments in the Middle East. (MARGARET BARLOW)

Prize for Literature
      Japanese novelist Kenzaburō Ōe, who gave a voice to the darkness that gripped the soul of his nation in the aftermath of war, was awarded the 1994 Nobel Prize for Literature. Referring to the impact on Ōe and his generation of Japan's defeat in World War II and the subsequent occupation, the Swedish Academy of Letters wrote, “The humiliation took a firm grip on him and has coloured much of his work.”

      Born on Jan. 31, 1935, he was 10 when the emperor of Japan surrendered and the U.S. occupation forces arrived at Ōe's mountain village on the island of Shikoku. Years later, when he was a student (1954-59) of French literature at the University of Tokyo, he wrote to express his anger and betrayal over these events. Short stories such as “Shiiku” (1958; “The Catch,” 1959), for which he won the Akutagawa Prize, symbolized the disillusionment that pervaded postwar Japan. Always a voracious reader, he was influenced by many French- and English-language writers, including Mark Twain, whose antiestablishment Huckleberry Finn was an early hero to Ōe.

      Two powerful books embodied primary themes that dominated Ōe's work. Hiroshima noto (1965; Hiroshima Notes, 1981) was based on 1963 interviews with atomic-bomb survivors and chronicled courage in the face of hopeless destruction. In Kojinteki na taiken (1964; A Personal Matter, 1968), Ōe probed his desperate struggle to come to terms with his first-born son's severe brain damage. After his plot to take the child's life fails, he decides to let him live and accepts his obligation to love and nourish the boy. The novel, winner of the 1964 Shinchō Prize, was the first of several autobiographical stories in which his son appeared.

      While his essays often drew criticism for their preoccupation with left-leaning politics, Ōe's style was praised for its brilliance and energy. It was in short-fiction collections such as Warera no kyoki o ikinobiru michi o oshieyo (1969; Teach Us to Outgrow Our Madness, 1977) and Nan to mo shirenai mirai ni (1983; The Crazy Iris and Other Stories of the Atomic Aftermath, 1985) that he displayed the “poetic force” commended by the academy. Ōe's novel Man'en gannen no futtoboru (1967; The Silent Cry, 1974), which won a Tanizaki Prize, was singled out by the academy as “one of his major works. At first glance it appears to concern an unsuccessful revolt, but fundamentally the novel deals with people's relationships . . . in a confusing world in which knowledge, passions, dreams, ambitions, and attitudes merge into each other.”

      Expressing surprise at the academy's announcement, Ōe commemorated two compatriots, saying that they shared the prize in a symbolic way. Kōbō Abe, author of the surrealistic Suna no onna (1962; The Woman in the Dunes, 1964), and Masuji Ibuse, who wrote about the victims of the atomic bomb in Kuroi ame (1966; Black Rain, 1969), had both died in 1993. The only other Japanese writer to have won the Nobel literature prize was Yasunari Kawabata, in 1968. (MARGARET BARLOW)

Prize for Chemistry
      An organic chemist, George A. Olah of the University of Southern California (USC) won the 1994 Nobel Prize for Chemistry for discovering how to extend the life span of an elusive family of compounds that appear for only a split second in the intermediate stages of chemical reactions. Use of his technique finally provided proof that those chemical intermediates, termed carbocations, really do exist. “Olah's discovery completely transformed the scientific study of the elusive carbocations,” said the Royal Swedish Academy of Sciences in its citation. It allowed chemists to study the structure of carbocations, improve their understanding of the manner in which organic compounds react to produce products, and find ways of manipulating reactions to yield desired products. Olah's work led to many industrial applications, including syntheses of high-strength plastics and lead-free high-octane gasoline.

      Olah became interested in carbocations while still in his native country of Hungary. He was born May 22, 1927, in Budapest and received his Ph.D. in 1949 from the Technical University of Budapest. After holding various positions at the university, he served as head of the department of organic chemistry and associate director of the central research institute of the Hungarian Academy of Sciences. Following the 1956 Hungarian revolution and the subsequent defeat by Soviet troops, Olah fled the country and began work at a Dow Chemical Co. laboratory in Ontario, where he developed the techniques for stabilizing and isolating carbocations. He served on the faculty of Case Western Reserve University, Cleveland, Ohio, from 1965 to 1977. Olah then moved to USC and in 1991 became director of the Loker Hydrocarbon Research Institute.

      Carbocations are positively charged fragments of hydrocarbon molecules whose properties had puzzled chemists since the 1920s and '30s. At that time chemists had only a poor understanding of the way that reactions actually proceed. In a reaction, chemicals called reactants interact to form products, new compounds having structures and properties that can be much different from those of the reactants. The earliest studies of organic reactions made chemists realize that in some reactions the products could not possibly form in a single step. Rather, intermediate products must form and disappear as the reaction proceeds, as no other mechanism could account for some of the dramatic structural changes that were seen to take place in the transformation from reactants to products. Chemists theorized that the intermediates in hydrocarbon reactions would be positively charged hydrocarbon molecules, or carbocations. Since most chemical reactions proceed quickly, carbocations had to form and disappear in millionths of a second. Chemists thought that it would be impossible to isolate and study carbocations because they would vanish long before any analytical technique could be completed.

      Olah's method for extending the life span of carbocations from millionths of a second to months was relatively simple. He prepared stable carbocations by dissolving hydrocarbon compounds in cold solutions of powerful acids such as that made by mixing hydrogen fluoride and antimony pentafluoride. Such “superacids” are much stronger than conventional acids like the sulfuric acid used in automobile storage batteries. The technique produced high concentrations of stable carbocations that could be studied with conventional analytical tools. Some of the early analyses, which were conducted by Olah's group, brought additional surprises. Ever since the 1860s it had been believed that carbon could form no more than four chemical bonds with other atoms—the basis for the carbon-atom-centred tetrahedral structure well known to chemists. Analysis showed, however, that some carbocations were pentahedral or hexahedral, capable of forming additional bonds. (MICHAEL WOODS)

Prize for Physics
      Two scientists, one American and one Canadian, shared the 1994 Nobel Prize for Physics for developing neutron scattering, a powerful technique that uses nuclear radiation to analyze the innermost structure and properties of matter. The Royal Swedish Academy of Sciences, in awarding the prize, said that the pioneering work of Clifford G. Shull and Bertram N. Brockhouse was of major theoretical and practical importance. Neutron scattering allowed scientists to peer into the atomic structure of bulk matter and begin to understand interactions that determine the properties of solid and liquid materials. Neutron-scattering studies were important in the development of magnetic materials in computer data-storage devices, new superconducting materials that lose electrical resistance without deep cooling, and better catalysts for cleaning up automobile exhausts. They even contributed to elucidating the structure of disease-causing viruses.

      Brockhouse and Shull conducted their research independently in the 1940s and '50s at two of the earliest nuclear reactors built in Canada and the U.S. Brockhouse worked at the Chalk River reactor in Ontario, Shull at Oak Ridge National Laboratory in Tennessee. The reactors supplied beams of neutrons—electrically neutral subatomic particles emitted during radioactive decay—that the two scientists exploited in their research. As early as the 1930s physicists had dreamed of using neutrons to study the atomic structure of materials. They knew that neutrons, like other subatomic particles, have the ability to behave as both particles and waves. When neutrons strike a sample of matter, they penetrate, collide with the nuclei of the constituent atoms, and then diffract, or scatter, in a characteristic pattern that depends on their wavelike behaviour. The resulting diffraction pattern provides detailed information about the composition of the material under study, specifically the way that its atoms are arranged in space in relation to each other.

      In 1946 Shull joined a group of Oak Ridge physicists, headed by E.O. Wollan, who were trying to use neutron-diffraction patterns to locate the three-dimensional positions of atoms in solid materials. A similar technique, based on X-rays, already was in use. But X-ray diffraction could not determine the location of hydrogen atoms, which are an important component of many inorganic materials and all organic molecules found in living things. Unlike neutrons, which deflect off the nucleus of an atom, X-rays deflect off the orbiting electrons. Hydrogen has just one electron around its nucleus and thus is scarcely noticeable on X-ray diffraction patterns.

      “Similar efforts were being made elsewhere,” the Royal Swedish Academy said, “but it was the Wollan-Shull group and later Shull in collaboration with other researchers that proceeded most purposively and achieved results with surprising rapidity.” Nuclear reactors produce neutrons that move at different speeds. Researchers, in contrast, needed beams of neutrons that were monochromatic—all traveling at essentially the same speed. Shull's group solved the problem by passing the mixed beams through crystals of sodium chloride and other materials. The crystals separated neutrons of different speeds into separate, monochromatic beams. Shull and his colleagues studied neutron diffraction in very simple crystals, thus establishing the basis for interpreting diffraction patterns from more complicated materials. They also developed a neutron-scattering technique to probe the structure of magnetic materials, a task that could not be done with X-ray diffraction.

      Shortly after Shull began his work, Brockhouse initiated studies that led to development of neutron spectroscopy, the technique that brought his share of the Nobel Prize. “During a hectic period between 1955 and 1960 Brockhouse's pioneering work was without parallel within neutron spectroscopy,” the Royal Swedish Academy said. Scientists already knew that atoms in the innermost structure of materials vibrate or oscillate. Vibrations induced in one atom cause neighbouring atoms to resonate, so that the entire crystal vibrates in a unique pattern determined by its atomic structure. Knowledge about a material's vibrational energy is extremely important because it helps to determine how well a material will conduct electricity or heat. Brockhouse's neutron spectroscopy technique provided a way for scientists to measure vibrational energy.

      He devised an apparatus, similar to that developed by Shull, for obtaining monochromatic beams of neutrons and passed them through samples of crystalline material. When the neutrons collided with an atom, they lost energy and set up vibrations in the crystal structure of the material. Brockhouse also developed a device, called the triple-axis spectrometer, that measured the amount of energy that neutrons lost as a result of scattering. He realized that the lost energy could be interpreted as energy absorbed by the sample in the creation of phonons. Phonons are units of vibrational energy that proved to be of great use in evaluating the properties of different materials.

      Brockhouse was born July 15, 1918, in Lethbridge, Alta. He received a Ph.D. in 1950 from the University of Toronto. That same year he began a long career at the Chalk River Nuclear Laboratories operated by Atomic Energy of Canada Limited. He joined the faculty of McMaster University, Hamilton, Ont., in 1962, where he helped to establish a program in solid-state physics. Shull was born Sept. 23, 1915, in Pittsburgh, Pa. He received his Ph.D. in 1941 from New York University. After working as a research physicist for a private firm, Shull served as chief physicist at the Oak Ridge National Laboratory from 1946 to 1955. He then joined the faculty of the Massachusetts Institute of Technology as professor of physics. (MICHAEL WOODS)

Prize for Physiology or Medicine
      Two American researchers, Alfred G. Gilman and Martin Rodbell, shared the 1994 Nobel Prize for Physiology or Medicine for discovering G proteins, molecules that allow cells to respond to chemical signals such as hormones, neurotransmitters, and growth factors from a variety of the body's tissues. G proteins proved to be the missing link in a biochemical information-processing system in which cells react to incoming signals in ways that give rise to such fundamental life processes as metabolism, vision, smell, and cognition. Diseases can result from disturbances in the way that G proteins pass on, or transduce, incoming signals. Rodbell retired in June 1994 as head of the laboratory of signal transduction at the National Institute of Environmental Health Sciences (NIEHS), a U.S. government agency located in Research Triangle Park, N.C. Gilman was with the University of Texas Southwestern Medical Center in Dallas.

      Long before Rodbell and Gilman began their work, conducted independently in the 1960s and '70s, scientists knew that cells use hormones and other chemical messengers to communicate with one another and coordinate their activities. The American scientist Earl W. Sutherland, Jr., won the 1971 Nobel Prize for Physiology or Medicine for showing that most hormones, which he called “first messengers,” carry signals to the outer surface of the cell membrane in animals. Rather than entering the cells directly, the hormone molecules attach to special receptor sites on the cell surface, and the cell responds by producing a “second messenger,” the compound cyclic adenosine monophosphate (cAMP), which acts inside the cell. Molecules of cAMP relay the final signals that alter function within the cell. Humans respond to fright, for instance, by producing the hormone epinephrine (adrenaline), which signals heart muscle cells to produce cAMP, which causes the heart muscle to beat faster and stronger.

      Beginning in the late 1960s, Rodbell, then working at the National Institutes of Health (NIH), Bethesda, Md., showed that this communication process requires cooperation between three separate components. They are the cell surface receptor, a transducer that relays information from the receptor, and an amplifier that produces large quantities of second-messenger molecules like cAMP. Rodbell was among the first to realize that the receptor and amplifier were separate entities. But his major contribution was the discovery of a separate transducer function in cell communication that explained the way in which information passed between receptor and amplifier. Rodbell showed that the transducer worked only in the presence of an energy-rich molecule called guanosine triphosphate (GTP).

      Gilman and his associates, working in the 1970s at the University of Virginia, Charlottesville, determined the chemical nature of Rodbell's mysterious transducer. They studied mutated cells that could not respond to outside chemical signals. The cells, nevertheless, had a normal receptor mechanism for accepting signals from a first messenger and a normal ability to generate cAMP as a second messenger. Gilman showed that the cells lacked a functional transducer mechanism that relayed the signal from receptor to amplifier. He further established that the missing component was a protein, found in normal cells, and showed that its transfer to defective cells restored signal transmission. By 1980 Gilman's group had purified the protein, allowing its properties to be studied. Researchers found that the protein exists in the cell membrane in an inactive form until a signal arrives and binds to the membrane. Then the protein rapidly changes into an active form by binding to GTP. This association with GTP led to the protein's name, the G protein. The activated G protein then shuttles from the receptor system to the amplifier system, turning on production of large amounts of the second messenger cAMP. After a few seconds the G protein reverts to an inactive form and awaits another activating signal.

      Scientists subsequently identified about 100 kinds of cell receptors that rely on G proteins for transducing signals into cellular action. G proteins in the cells of the eye's retina, for instance, transduce the light signals that the brain interprets as images. Other G proteins work in olfactory cells and taste cells, help regulate the overall metabolic activity of cells, and help control cell division and specialization.

      “Many symptoms of disease are explained by an altered function of G-proteins,” said the Nobel Assembly at the Karolinska Institute, a biomedical research centre in Stockholm that selects winners of the medicine prize. The toxin produced by cholera bacteria, for instance, prevents one kind of G protein from reverting to an inactive form. Stuck in the “on” position, it causes the severe loss of water and salts that dehydrates and kills many cholera victims. Abnormal activity of G proteins may be involved in cancer, diabetes, skeletal diseases, and other health problems.

      Rodbell was born Dec. 1, 1925, in Baltimore, Md. He received his Ph.D. in 1954 from the University of Washington and held positions in the U.S. and Switzerland. From 1970 to 1985 he headed laboratories at NIH and then joined NIEHS as scientific director. Gilman was born July 1, 1941, in New Haven, Conn. He received M.D. and Ph.D. degrees in 1969 from Case Western Reserve University, Cleveland, Ohio. From 1971 to 1981 he served on the faculty of the University of Virginia School of Medicine in Charlottesville. In 1981 Gilman moved to the University of Texas Southwestern Medical Center, where he served as professor and chairman of pharmacology. He also was coeditor and coauthor of a noted, regularly revised textbook on drug action, The Pharmacological Basis of Therapeutics, which was originated by his father, Alfred, also a pharmacologist. (MICHAEL WOODS)

▪ 1994


Prize for Peace
      The 1993 Nobel Peace Prize was awarded jointly to two of South Africa's most prominent figures: Pres. F.W. de Klerk and Nelson Mandela, head of the African National Congress (ANC) and “the world's most famous prisoner,” for their untiring efforts to bring about a peaceful transition to a nonracial democracy in a nation long and severely torn by the racial policies of apartheid. The two leaders were cited by the Norwegian Nobel Committee for their “personal integrity and great political courage. . . . South Africa has been the symbol of racially conditioned suppression. Mandela's and de Klerk's constructive policy of peace and reconciliation also points the way to the peaceful resolution of similar deep-rooted conflicts elsewhere in the world.”

      Both men were restrained in their responses to having won the Peace Prize. Mandela declined to comment entirely, while de Klerk ascribed the prize to a process rather than to individuals. Their wary reactions typified the pattern of their complex and mistrustful relationship as leaders of opposing camps moving toward peaceful resolutions. As the chairman of the committee made explicit, “These are not saints. They are politicians in a complicated reality, and it is the total picture that was decisive.” Despite South Africa's continuing civil unrest, the committee honoured the two for setting an election date and for agreeing to create a multiracial council that would oversee the government during the elections scheduled for April 1994.

      Frederik Willem de Klerk was born March 18, 1936, in Johannesburg, South Africa. He earned a law degree from Potchefstroom University in 1958 and established a successful law practice in Vereeniging, southern Transvaal. In 1972 he was elected to Parliament for the National Party (NP), and though he was rather a dull parliamentary speaker, he was distinguished by his legal talents, which led to his key roles in the ministerial portfolios of mines, social welfare, national education, energy affairs, and internal affairs. He was known for his calm and moderate, sometimes cautious, approach to sensitive political issues. As chairman of the provincial NP, he established a power base in Transvaal, the NP's largest constituency in the country, and was elected South Africa's president in September 1989. Soon after taking office, de Klerk announced a shift away from the remaining apartheid laws, and he released all political prisoners except Mandela, who was serving a life sentence on charges of conspiracy to overthrow the government by revolution as founder of Umkhonto we Sizwe (Spear of the Nation), the military wing of the ANC.

      Nelson Rolihlahla Mandela was born July 18, 1918, in Transkei into the ruling family of the Tembu. He was expelled from the University College of Fort Hare for involvement in a student strike and fled Transkei to avoid a tribal marriage. He earned a B.A. degree by correspondence but later gained a law degree at the University of the Witwatersrand. Mandela established a law practice with Oliver Tambo, his predecessor as ANC president, and became deeply involved in political activism. He was arrested in 1952, 1956, and 1962, and in 1964 he received his life sentence. During his 27 years in prison, Mandela became a symbol of the continued struggle for freedom. After he was released from jail by de Klerk in February 1990, Mandela joined de Klerk, a former adversary, in watershed negotiations to dismantle the last vestiges of apartheid. (BONNIE OBERMAN)

Prize for Economics
      Robert William Fogel of the University of Chicago and Douglass Cecil North of Washington University, St. Louis, Mo., were jointly awarded the 1993 Nobel Memorial Prize in Economic Science for their work in economic history. It was the first time the economics prize had been given to historians and the fourth year in a row that an economist from the University of Chicago had won. The two men were honoured by the Royal Swedish Academy of Sciences for “applying economic theory and quantitative methods” to historical events and were credited with founding cliometrics, a “new economic history” based on a rigorous statistical analysis of precise objective measurements. The academy also cited their creation of enormous computer databases of previously unexamined data.

      North was born in Cambridge, Mass., on Nov. 5, 1920, and studied economics at the University of California at Berkeley (B.A., 1942; Ph.D., 1952). In 1950 he joined the faculty of the University of Washington, where he was professor of economics (1950-83) and department chairman (1967-79). In 1983 he left the University of Washington to teach at Washington University. A renowned theoretician, he also served as director of both the Institute for Economic Research (1960-66) and the National Bureau of Economic Research (1967-87). North developed an empirical model of early American economic history. He demonstrated that market economies are inextricably linked with social and political institutions; thus, the study of how these institutions change over time must be an integral part of economic theory. His many books include The Economic Growth of the United States 1790 to 1860 (1961), The Rise of the Western World: A New Economic History (1973), and Structure and Change in Economic History (1981). North first brought attention to cliometrics in the early 1960s as editor of the Journal of Economic History, in which he published not only his own work but also that of younger colleagues, including Fogel.

      Fogel, who was known for his radically new ideas, was born on July 1, 1926, in New York City. He received advanced degrees from numerous universities, including Columbia, New York City (M.A., 1960), Johns Hopkins, Baltimore, Md. (Ph.D., 1963), Cambridge (M.A., 1975), and Harvard (M.A., 1976). He first attracted attention for his theory that smaller innovations rather than giant technological breakthroughs were the backbone of industrialization and for his groundbreaking contention that the railroads had minimal impact on the growth of the American economy. The latter theory he presented in The Union Pacific Railroad: A Case in Premature Enterprise (1960) and Railroads and American Economic Growth: Essays in Econometric History (1964). In 1974 Fogel published Time on the Cross: The Economics of American Negro Slavery, in which he argued that rather than being self-destructive, slavery was an efficient cotton-growing system that collapsed for political, not economic, reasons. The resulting furor was so bitter and the questions the book raised were so abundant that Fogel published a four-volume defense of his work, Without Consent or Contract: The Rise and Fall of American Slavery (1989-92), which included a moral condemnation of slavery and clarified his prior research. In 1993 Fogel's increasingly unconventional work focused on the effects of starvation and the importance of improved nutrition on economic development. (BONNIE OBERMAN)

Prize for Literature
      Toni Morrison, a superb weaver of a web of rich stories, received her highest compliment when she was named winner of the 1993 Nobel Prize for Literature. The Swedish Academy of Letters, in awarding the $825,000 prize, proclaimed her “a literary artist of the first rank” and offered high praise for her masterful style by adding, “She delves into the language itself, a language she wants to liberate from the fetters of race. And she addresses us with the luster of poetry.”

      The eighth woman and the first African-American woman to win the literature prize, Morrison, a professor of creative writing at Princeton University, was hailed for such lyrical novels as Song of Solomon (1977), which won the National Book Critics Circle Award; Beloved (1987), winner of the Pulitzer Prize for fiction; and, her most recent work, Jazz (1992). She also published a book of essays, Playing in the Dark: Whiteness and the Literary Imagination (1992). A lesser-known novel, Sula (1973), was nominated for a 1975 National Book Award. In recognizing Morrison's sometimes wrenching yet poignant explorations of the African-American experience, which spanned the days of slavery to contemporary times, the academy noted that Morrison “gives life to an essential aspect of American reality” in novels of “visionary force and poetic import.”

      Morrison was born Chloe Anthony Wofford on Feb. 18, 1931, in Lorain, Ohio. She earned a B.A. degree (1953) in English from Howard University, Washington, D.C., and a master's degree (1955), also in English, from Cornell University, Ithaca, N.Y. For two years following her graduation, she taught English at Texas Southern University, and she began teaching at Howard in 1957. While at Howard, she married Jamaican architect Harold Morrison, with whom she had two children; they were divorced in 1964. In 1966 she moved with her children to Syracuse, N.Y., where she worked as a textbook editor for a subsidiary of Random House. During that time she began writing fiction, and one of her short stories evolved into her first novel, The Bluest Eye (1970). She also taught at several universities, including Yale and the State University of New York at Albany. In 1989 Morrison was named the Robert F. Goheen professor in the Council of Humanities at Princeton University.

      Using folklore, mythology, and sometimes the supernatural, Morrison's work is both urgent and passionate. She employs violence to portray the struggles of troubled African-Americans attempting to survive in a racist society. The grandmother in Sula, for example, puts her leg in front of an oncoming train in order to collect insurance money to feed her family, and in Beloved a runaway slave cuts her daughter's throat rather than allow her to live in slavery. Jazz was a gripping and violent tale of life in Harlem during the 1920s. In her work Morrison portrays how bleak social conditions prey on the hearts and minds of the underclass. Yet, as her characters search for both individual and cultural identity, they both rage at and accept the world and mix hope with doubt and despair.

      The author herself had reason to despair. A Christmas-day fire gutted her New York home in Grand View-on-Hudson, but fortunately her son escaped and her original manuscripts and papers, which were stored in the basement, were spared heavy damage. (BONNIE OBERMAN)

Prize for Chemistry
      The 1993 Nobel Prize for Chemistry was awarded to Kary B. Mullis, formerly of the biotechnology firm Cetus Corp., Emeryville, Calif., and Michael Smith of the University of British Columbia. According to the Nobel committee, “The chemical methods that they have each developed for studying the DNA molecules of genetic material have further hastened the rapid development of genetic engineering. The two methods have greatly stimulated basic biochemical research and opened the way for new applications in medicine and biotechnology.”

      Mullis received his share of the prize for devising the polymerase chain reaction (PCR), a technique for quickly making trillions of copies of a single fragment of DNA, the genetic material of living organisms. Mullis conceived of PCR, the idea for which he said came to him during a night drive in the California mountains, while employed at Cetus. A description of the technique was first published in 1985.

      Before the development of PCR, obtaining a usable quantity of a specific stretch of DNA from a large DNA molecule had been a laborious process. Once Mullis' technique became available, scientists could pick out a tiny DNA fragment from a complex brew of genetic material and repeatedly copy it, amplifying its amount enormously in just a few hours. The technique makes use of special synthetic “primers”—short pieces of DNA tailored to bind to the target DNA that is to be copied—and DNA polymerase, a bacterially derived enzyme that can assemble new DNA from its building-block molecules, called nucleotides, while using the target DNA as a template. The entire process is carried out on automated bench-top equipment.

      Since its introduction PCR has opened up new possibilities for gene sequencing, the determination of the order of the nucleotides that compose a gene; genetic fingerprinting, the identification of individual organisms by the distinctive patterns in their DNA; the study of evolution; and medical diagnosis. The technique has become a key tool in the ambitious international effort to map and sequence the entire genetic endowment of human beings. Using PCR on museum specimens and fossil remains, researchers have isolated DNA from plants and animals that became extinct hundreds to millions of years ago. In medicine PCR has made it possible to identify the causative agent of a patient's viral or bacterial infection directly from a tiny sample of genetic material. It has also been exploited in the search for the genetic alterations underlying hereditary diseases.

      Smith received his share of the chemistry Nobel for developing the procedure known as site-directed mutagenesis and applying it to the study of proteins. With Smith's method researchers were given the tools to reprogram the genetic code—the sequence of nucleotides in a gene that provides instructions for synthesizing a specific protein from its component amino acid subunits—and, consequently, to construct proteins with new properties.

      Proteins are responsible for the functions of living cells; those that serve as the biological catalysts known as enzymes have the particularly critical role of maintaining all the chemical reactions required for supporting life. The three-dimensional structure of a given protein and, hence, its function are determined by the order in which the various amino acids are linked together. By reprogramming the genetic code that specifies a particular protein, it is possible to obtain a mutated protein in which one of its amino acids has been replaced by another. Biochemical researchers had long wished to make such precise alterations in a gene in order to study how the properties of the mutated protein differ from those of the natural one. Before Smith's development researchers had resorted to inducing random mutations in DNA by exposing cells to certain chemicals or radiation and then sorting through the mutated proteins made by the cells for those of interest. Smith's process gave them the means to generate specific, customized proteins.

      Smith conceived of site-directed mutagenesis in the early 1970s while working as a visiting researcher in England, and during the next few years in Vancouver he developed and refined the process. Similar in some ways to PCR, Smith's approach uses a small synthesized fragment of DNA as the starting point for the construction of an entire gene by DNA polymerase, using the natural gene as a template. The nucleotide sequence of the fragment, however, differs from the corresponding sequence of the natural gene at a single amino acid coding site, and so the new gene that is built from the fragment carries this one change. To obtain the mutated protein, researchers insert the altered genetic material, by way of an infectious carrier virus, into the DNA of a bacterium, which then makes the mutated protein as part of its normal cellular activities.

      Smith's method created an entirely new means of studying proteins. By systematically changing the amino acids in a protein, researchers can determine what role each amino acid plays in directing the protein's activity or maintaining its structure. The method has found wide use in biotechnology, where scientists have sought to produce altered proteins that are more stable, more active, or more useful to medicine or industry than their natural counterparts—for example, hemoglobin variants that may serve as blood substitutes or alterations in key plant proteins that would improve the efficiency of photosynthesis in crop plants. In addition, site-directed mutagenesis may allow doctors to cure hereditary diseases by correcting the causative genetic mutation.

      Mullis was born in Lenoir, N.C., on Dec. 28, 1944. He received his Ph.D. in 1972 from the University of California at Berkeley. From 1973 through 1977 he held research posts at various U.S. universities. He joined Cetus in 1979 and in 1986 became director of molecular biology at Xytronyx, Inc., San Diego, Calif. Most recently he worked as a freelance consultant based in La Jolla, Calif.

      Smith, a naturalized Canadian citizen, was born in Blackpool, England, on April 26, 1932. He earned a Ph.D. from the University of Manchester in 1956. After holding a number of posts in the U.S. and Canada, Smith joined the faculty of the University of British Columbia in 1966, becoming the director of the university's biotechnology laboratory in 1987. He served as a career investigator of the Medical Research Council of Canada from 1979. Smith also provided scientific leadership for the Protein Engineering Network of Centres of Excellence (PENCE), a collaborative research effort with university, industry, and government involvement.


Prize for Physics
      Two astrophysicists from Princeton University, Joseph H. Taylor, Jr., and Russell A. Hulse, were awarded the 1993 Nobel Prize for Physics for their discovery of a new type of pulsar, termed a binary pulsar, that “has opened up new possibilities for the study of gravitation,” according to the Nobel committee. The pair did their prizewinning work in the 1970s while Taylor was a professor at the University of Massachusetts at Amherst and Hulse was Taylor's graduate student.

      Taylor and Hulse made their discovery in 1974 while conducting a systematic search for pulsars with the large radio telescope at Arecibo, P.R. A pulsar, short for pulsating radio star, is thought to be a rapidly spinning neutron star, an extremely dense star that is composed almost entirely of neutrons and that was formed in an explosive stellar event called a supernova. The extremely intense magnetic field that surrounds a neutron star gives rise to a narrow beam of radio emission (and occasionally of other kinds of emission such as visible light or X-rays), which sweeps around the star like a beam of light from a lighthouse. When the Earth happens to lie in the path of the beam, observers detect brief, precisely timed pulses of radio waves from the star, which then is labeled a pulsar. The time between pulses corresponds to the pulsar's period of rotation.

      In 1967 English astronomer Jocelyn Bell, by using a radio telescope at the University of Cambridge, detected radio signals from what would be identified as the first known pulsar. For recognizing the significance of the pulsed signals, Antony Hewish, Bell's doctoral thesis adviser and supervisor at Cambridge, was awarded the physics Nobel in 1974.

      That same year Taylor and Hulse, who had already discovered dozens of ordinary pulsars, found one whose pulses were not exactly regular. The interval between pulses varied in a definite pattern, decreasing and increasing over an eight-hour period. Taylor and Hulse concluded that the pulsar must be moving alternately toward and away from the Earth; in other words, it must be in orbit around a companion body and thus part of a binary star system. From the behaviour of the pulsar's signal, the scientists were also able to deduce that the companion is another neutron star, about as heavy as the pulsar, and is located at a distance corresponding to only a few times that between the Moon and the Earth. Both bodies have a radius of some 10 km (6 mi) and a mass comparable to that of the Sun.

      Taylor and Hulse's discovery of the first binary pulsar, called PSR 1913+16, “brought about a revolution in the field,” according to the Nobel committee, because it provided a “space laboratory” in which researchers could test Einstein's general theory of relativity and alternative theories of gravity. The scientists quickly realized that, according to the general theory, the two stars' enormous interacting gravitational fields should affect the timing of the pulsar's pulses in ways large enough to measure. What they had available to them, as they pointed out in a 1975 article about their discovery, was “a nearly ideal relativity laboratory including an accurate clock in a high-speed, eccentric orbit and a strong gravitational field.”

      One prediction of the general theory that still awaited confirmation was the existence of gravitational waves, disturbances in space-time produced by objects moving in a gravitational field. By timing the pulses over a long period and analyzing the variations, Taylor and Hulse showed that the two stars are rotating ever faster around each other in an increasingly tight orbit. This orbital decay, signaled by a decrease in the pulsar's orbital period of about 75 millionths of a second per year, is presumed to occur because the system is losing energy in the form of gravitational waves. In fact, the rate at which the stars are spiraling together agrees with the prediction of the general theory to an accuracy of better than 0.5%. This finding, reported in 1978, not only afforded the first experimental evidence for the existence of gravitational waves but also provided powerful support for Einstein's theory of gravity over its competitors.

      Taylor was born on March 24, 1941, in Philadelphia. After earning a Ph.D. in astronomy from Harvard University in 1968, he joined the University of Massachusetts faculty. From 1977 to 1981 he served as associate director of the Five-College Radio Astronomy Observatory. In 1980 Taylor moved to Princeton, where he subsequently became the James S. McDonnell distinguished university professor of physics.

      In the decades after his prizewinning discovery, Taylor continued to provide experimental confirmation of the general theory by means of painstaking measurements on PSR 1913+16 and two other binary pulsars that his group later discovered. In 1985 Taylor's group found a new binary pulsar, designated PSR 1855+09, whose rotation was clocked at 186 times per second, making it the second most rapidly spinning pulsar known. Because of the speed and stability of its rotation, the pulsar and others like it, which have been termed millisecond pulsars, could provide a better time standard than even the most accurate atomic clocks.

      Hulse, who was born on Nov. 28, 1950, in New York City, received a Ph.D. degree in physics in 1975 from the University of Massachusetts. After working as a postdoctoral fellow at the National Radio Astronomy Observatory, Charlottesville, Va., he changed fields from astrophysics to plasma physics and in 1977 assumed a position at the Princeton Plasma Physics Laboratory. His more recent research was associated with the Tokamak Fusion Test Reactor, an experimental facility devoted to developing usable electric power from thermonuclear fusion. (CAROLYN HEMENWAY)

Prize for Physiology or Medicine
      The 1993 Nobel Prize for Physiology or Medicine was awarded to two American molecular biologists, Richard Roberts and Phillip Sharp, for their independent discovery that genes are often split; in other words, that the genetic instructions contained in DNA and used by the living cell to make proteins can be discontinuous. Before the laureates' findings, DNA research had focused primarily on bacterial cells, in which the instructions to make a given protein molecule are encoded in DNA's sequence of nucleotides, its molecular building blocks, as a single uninterrupted gene. By studying viral cells the laureates showed that this model is not generally correct. In 1977 they demonstrated that individual genes are often interrupted by long sections of DNA, since dubbed intervening sequences, or introns, that do not encode protein structure.

      According to the Nobel citation, “Roberts' and Sharp's discovery has changed our view on how genes in higher organisms develop during evolution. The discovery also led to the prediction of a new genetic process, namely that of splicing, which is essential for expressing the genetic information. The discovery of split genes has been of fundamental importance for today's basic research in biology, as well as for more medically oriented research concerning the development of cancer and other diseases.”

      Bacterial studies conducted previously had indicated that when a gene is to be translated into its protein product, its nucleotide sequence is copied into a similar sequence in a molecule called messenger RNA. The messenger RNA, without modification, then carries its coded instructions to the cell's protein-synthesis machinery, which reads the code and uses it to assemble the protein. Scientists assumed that what they had found in bacteria also held true both for plant and animal cells and for viruses. Viruses use their genetic material to take over the protein-synthesis machinery of the cells that they infect in order to reproduce. Consequently, Roberts and Sharp reasoned that by studying how viruses make proteins in their cellular hosts, they would learn more about how the host cell makes its own proteins. Both men chose to study a common cold-causing virus, called an adenovirus, since its genome, or total endowment of genes, is contained on a single molecule of DNA and is similar in many ways to the DNA of its host cells.Their aim was to determine where in the genome different genes were located.

      In the course of their experiments Roberts, who headed a team at the Cold Spring Harbor Laboratory in New York, and Sharp, whose team worked at the Massachusetts Institute of Technology (MIT), attempted to bind the adenovirus messenger RNA chemically with its DNA counterpart, matching up the nucleotides of the two molecular strands along their lengths, so as to learn which part of the viral genome had produced the messenger RNA. When the researchers used electron microscopy to visualize the matchup, to their surprise they found large loops of unbound DNA between the bound sections, indicating that substantial segments of the original viral DNA were not represented in the final messenger RNA molecule.

      When Roberts and Sharp announced their findings in 1977, the news sparked an intensive search by other scientists for discontinuous gene structure in a variety of organisms. It was soon shown that split genes are common; in fact, they are now known to be the most common type of gene structure in higher organisms, including human beings.

      The laureates' discovery transformed the model for understanding how proteins are synthesized from genes. Scientists now realize that in many cases the messenger RNA is first made as a large precursor molecule having the introns from the DNA represented in its structure. Then, in a process governed by enzymes, the introns are cut out and the remaining meaningful segments, called exons, spliced together in the correct order to form the final messenger RNA. Subsequent research also revealed that it is not always the same gene segments that are included in the final messenger RNA molecule. In different tissues or different developmental stages of an organism, different exon combinations may be used to produce the final RNA molecule. Thus, the same DNA region can supply information for a number of different proteins.

      The discovery of split genes and gene splicing modified scientists' view of how genetic material has developed during the course of evolution. The general view is that evolution takes place by means of the accumulation of mutations, or minor alterations in the genetic material, which result in a gradual change in the overall organism. That genes are often split, however, suggests that higher organisms may also use another mechanism—the rearrangement of genetic information into new protein-coding units—to speed up evolution and to respond more flexibly to environmental challenges. Later research also suggested that introns are something more than spare DNA. They appear to serve some sort of regulatory function at least, since engineered genes from which the introns have been removed often fail to produce protein. The field of medicine has benefited from the discovery of gene splicing. For example, errors in splicing are now known to underlie a number of disorders, including beta-thalassemia, a form of anemia, and chronic myelogenous leukemia, a type of cancer of the blood.

      Roberts was born on Sept. 6, 1943, in Derby, England. He obtained a Ph.D. in organic chemistry from the University of Sheffield, England, in 1968. After postdoctoral research at Harvard University, he was invited in 1972 by Nobel laureate James D. Watson to take a post as senior staff investigator at the Cold Spring Harbor Laboratory. In 1986 he became the laboratory's assistant director for research. Roberts remained at Cold Spring Harbor until 1992, when he became director of eukaryotic (nucleated cell) research at New England Biolabs, Beverly, Mass.

      Sharp was born on June 6, 1944, in Falmouth, Ky., on a small farm on which his parents grew tobacco and corn. Earnings from a piece of tobacco land given to him by his parents helped pay for part of his undergraduate education at Union College, Barbourville, Ky. After receiving a Ph.D. in chemistry in 1969 from the University of Illinois at Champaign-Urbana, Sharp worked as a postdoctoral fellow at the California Institute of Technology, Pasadena, and then, in 1971-72, at Cold Spring Harbor with Watson. From 1972 to 1974 he was a senior research investigator at Cold Spring.

      Sharp joined MIT in 1974. In the 1980s and early '90s he served as associate director and then director of the MIT Center for Cancer Research. In 1991 he was appointed to head MIT's department of biology, and in 1992 he became the first Salvador E. Luria professor, a chair established at MIT in honour of the 1969 Nobel laureate whose prizewinning work involved bacteriophages, viruses that infect bacteria. (CAROLYN HEMENWAY)

* * *

Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • NOBEL PRIZES — NOBEL PRIZES, awarded annually to men and women who have rendered the greatest service to mankind. Since the inception of the prize in 1899 it has been awarded to the following Jews or people of Jewish descent. (See Table: Jewish Nobel Prize… …   Encyclopedia of Judaism

  • Nobel Prizes — Nobel Prizes. См. Нобелевские Премии. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • Nobel Prizes —  are awarded in six categories: Chemistry, Literature, Peace, Physics, Physiology or Medicine, and Economics though the last named is not strictly a Nobel Prize (its formal title is the Bank of Sweden Prize in Economic Sciences). Nobel Prizes are …   Bryson’s dictionary for writers and editors

  • Nobel prizes — Nobel prize No*bel prize .; pl. {No*bel prizes}. Prizes for the encouragement of men and women who work for the interests of humanity, established by the will of Alfred B. Nobel (1833 1896), the Swedish inventor of dynamite, who left his entire… …   The Collaborative International Dictionary of English

  • Nobel Prize controversies — Nobel Prize Awarded for Outstanding contributions in physics, chemistry, literature, peace, and physiology or medicine. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel, identified with the Nobel Prize, is awarded for… …   Wikipedia

  • Nobel — (phonetic: [nobél]) can mean: Nobel Prize, awarded annually since 1901, from the bequest of Swedish inventor Alfred Nobel The Nobel family Alfred Nobel, (1833 1896), the inventor of dynamite, instituted the Nobel Prizes Immanuel Nobel, (1801… …   Wikipedia

  • Nobel Peace Center — entrance …   Wikipedia

  • Nobel — [nō bel′] Alfred Bernhard [ȧl′fred ber′nȧrd] 1833 96; Swed. industrialist, philanthropist, & inventor of dynamite: established the Nobel prizes …   English World dictionary

  • Nobel Prize — The Nobel Prize …   Wikipedia

  • Nobel prize — any of various awards made annually, beginning in 1901, from funds originally established by Alfred B. Nobel for outstanding achievement in physics, chemistry, medicine or physiology, literature, and the promotion of peace; an annual award in… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”