 electrical impedance

Opposition that a circuit presents to electric current.It includes both resistance and reactance. Resistance arises from collisions of the currentcarrying charged particles with the internal structure of the conductor. Reactance is an additional opposition to the movement of electric charge that arises from the changing electric and magnetic fields in circuits carrying alternating current. Impedance in circuits carrying steady direct currents is simply resistance. The magnitude of the impedance Z of a circuit is equal to the maximum value of the potential difference, or voltage V, across the circuit, divided by the maximum value of the current I through the circuit, or simply Z = V/I. The unit of impedance is the ohm.
* * *
▪ physicsmeasure of the total opposition that a circuit or a part of a circuit presents to electric current. Impedance includes both resistance and reactance (qq.v.). The resistance component arises from collisions of the currentcarrying charged particles with the internal structure of the conductor. The reactance component is an additional opposition to the movement of electric charge that arises from the changing magnetic and electric fields in circuits carrying alternating current. Impedance reduces to resistance in circuits carrying steady direct current.The magnitude of the impedance Z of a circuit is equal to the maximum value of the potential difference, or voltage, V (volts) across the circuit, divided by the maximum value of the current I (amperes) through the circuit, or simply Z = V/I. The unit of impedance, like that of resistance, is the ohm. Depending on the nature of the reactance component of the impedance (whether predominantly inductive or capacitive), the alternating current either lags or leads the voltage. The reciprocal of the impedance, 1/Z, is called the admittance and is expressed in terms of the unit of conductance, the mho (siemens) unit (ohm spelled backward).* * *
Universalium. 2010.