born 598
died с 665, possibly Bhillamala, Rajasthan, India

Indian mathematician and astronomer.

His principal work, the Brahma-sphuta-siddhanta ("The Opening of the Universe"), most of which deals with planetary motion, also contains important proofs of various geometrical theorems on quadratic equations, the geometry of right triangles, and the properties of geometric solids.

* * *

▪ Indian astronomer
born 598
died c. 665, possibly Bhillamala [modern Bhinmal], Rajasthan, India

      one of the most accomplished of the ancient Indian astronomers. He also had a profound and direct influence on Islamic and Byzantine astronomy.

      Brahmagupta was an orthodox Hindu, and his religious views, particularly the Hindu yuga system of measuring the ages of mankind, influenced his work. He severely criticized Jain cosmological views and other heterodox ideas, such as the view of Aryabhata I (b. 476) that the Earth is a spinning sphere, a view that was widely disseminated by Brahmagupta's contemporary and rival Bhaskara I.

      Brahmagupta's fame rests mostly on his Brahma-sphuta-siddhanta (628; “Correctly Established Doctrine of Brahma”), an astronomical work that he probably wrote while living in Bhillamala, then the capital of the Gurjara-Pratihara dynasty. It was translated into Arabic in Baghdad about 771 and had a major impact on Islamic mathematics and astronomy. Late in his life, Brahmagupta wrote Khandakhadyaka (665; “A Piece Eatable”), an astronomical handbook that employed Aryabhata's system of starting each day at midnight.

      In addition to expounding on traditional Indian astronomy in his books, Brahmagupta devoted several chapters of Brahma-sphuta-siddhanta to mathematics. In chapters 12 and 18 in particular, he laid the foundations of the two major fields of Indian mathematics, pati-ganita (“mathematics of procedures,” or algorithms (algorithm)) and bija-ganita (“mathematics of seeds,” or equations), which roughly correspond to arithmetic (including mensuration) and algebra, respectively. Chapter 12 is simply named “Mathematics,” probably because the “basic operations,” such as arithmetic operations and proportions, and the “practical mathematics,” such as mixture and series, treated there occupied the major part of the mathematics of Brahmagupta's milieu. He stressed the importance of these topics as a qualification for a mathematician, or calculator (ganaka). Chapter 18, “Pulverizer,” is named after the first topic of the chapter, probably because no particular name for this area (algebra) existed yet.

      Among his major accomplishments, Brahmagupta defined zero as the result of subtracting a number from itself and gave rules for arithmetical operations among negative numbers (“debts”) and positive numbers (“property”), as well as surds. He also gave partial solutions to certain types of indeterminate equations of the second degree with two unknown variables. Perhaps his most famous result was a formula for the area of a cyclic quadrilateral (a four-sided polygon whose vertices all reside on some circle) and the length of its diagonals in terms of the length of its sides. He also gave a valuable interpolation formula for computing sines.

Takao Hayashi

* * *

Universalium. 2010.

Look at other dictionaries:

  • Brahmagupta — (audio|Brahmagupta pronounced.ogg|listen) (598–668) was an Indian mathematician and astronomer. Life and work Brahmagupta was born in 598 CE in Bhinmal city in the state of Rajasthan of northwest India. He likely lived most of his life in… …   Wikipedia

  • Brahmagupta — (Devanagari: ब्रह्मगुप्त; * 598; † 668) war ein indischer Mathematiker und Astronom. Er leitete das astronomische Observatorium in Ujjain und verfasste in dieser Funktion zwei Arbeiten zur Mathematik und zur Astronomie, das Brahmasphutasiddhanta… …   Deutsch Wikipedia

  • Brahmagupta — (ब्रह्मगुप्त) (Multân, 598–668) est un mathématicien indien. Brahmagupta est l un des plus importants mathématiciens tant de l Inde que de son époque. On lui connaît deux ouvrages majeurs : le Brâhma Siddhânta (ब्रह्म सिद्धान्त) (628) et le… …   Wikipédia en Français

  • Brahmagupta — Saltar a navegación, búsqueda Brahmagupta (598 660) fue un matemático y astrónomo indio. Su padre fue Jisnugupta. Nació en el año 598, posiblemente en Ujjain, donde vivió. En esta ciudad de la zona central de la India se encontraba el más famoso… …   Wikipedia Español

  • Brahmagupta — (598 670) fue un matemático y astrónomo indio. Su padre fue Jisnugupta. Nació en el año 598, posiblemente en Ujjain, donde vivió. En esta ciudad de la zona central de la India se encontraba el más famoso y antiguo observatorio de astronomía del… …   Enciclopedia Universal

  • Brahmagupta — Brahmagụpta,   indischer Mathematiker und Astronom, * 598, ✝ nach 665 (?); wirkte in Ujjain, verbesserte Verfahren zur ganzzahligen Auflösung unbestimmter Gleichungen, beschäftigte sich mit der Bruchrechnung und verfasste 628 ein Lehrbuch (in… …   Universal-Lexikon

  • Brahmagupta theorem — Brahmagupta s theorem is a result in geometry. It states that if a cyclic quadrilateral has perpendicular diagonals, then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. It is named… …   Wikipedia

  • Brahmagupta's formula — In geometry, Brahmagupta s formula finds the area of any quadrilateral given the lengths of the sides and some of their angles. In its most common form, it yields the area of quadrilaterals that can be inscribed in a circle. Basic form In its… …   Wikipedia

  • Brahmagupta–Fibonacci identity — In algebra, Brahmagupta s identity, also sometimes called Fibonacci s identity, implies that the product of two sums of two squares is itself a sum of two squares. In other words, the set of all sums of two squares is closed under multiplication …   Wikipedia

  • Brahmagupta matrix — The following matrix was given by Indian mathematician Brahmagupta in 628:Fact|date=October 2008:B(x,y) = egin{bmatrix}x y pm ty pm x end{bmatrix}.It satisfies :B(x 1,y 1) B(x 2,y 2) = B(x 1 x 2 pm ty 1 y 2,x 1 y 2 pm y 1,x 2).,Powers of the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”