Archean Eon

Archean Eon
or Archaean Eon or Archeozoic Eon

Older of the two divisions of Precambrian time.

The Archean begins with the formation of the Earth's crust с 3.8 billion years ago and extends to с 2.5 billion years ago, up to the start of the Proterozoic Eon, the second division of the Precambrian Period. The earliest and most primitive forms of life (bacteria and cyanobacteria) originated с 3.5 billion years ago in the middle of the Archean Eon (the Archean's alternative name, Archeozoic, means "ancient life").

* * *

also spelled  Archaean Eon 
 the earlier of the two divisions of Precambrian time (about 4 billion to 542 million years ago). The Archean Eon began about 4 billion years ago with the formation of the Earth's crust and extended to the start of the Proterozoic Eon 2.5 billion years ago; the latter is the second division of Precambrian time. Records of Earth's primitive atmosphere (atmosphere, evolution of) and oceans (ocean) emerge in the earliest Archean (Eoarchean Era), and evidence of the earliest primitive life-forms—bacteria and blue-green algae—appears in rocks about 3.5 billion years old. Archean greenstone-granite belts contain many economic mineral deposits, including gold and silver.

      The start of the Archean Eon is only defined by the isotopic age (dating) of the earliest rocks. Prior to the Archean Eon, the Earth was in the astronomical (Hadean) stage of planetary accretion that began about 4.6 billion years ago; no rocks are preserved from this stage. The earliest terrestrial materials are not rocks but minerals. In Western Australia some sedimentary (sedimentary rock) conglomerates (conglomerate), dated to 3.3 billion years ago, contain relict detrital zircon grains that have isotopic ages between 4.2 and 4.4 billion years. These grains must have been transported by rivers from a source area, the location of which has never been found; it was possibly destroyed by meteorite impacts—quite frequent on both the Earth and the Moon before 4 billion years ago.

      It is thought that the oxygen content in today's atmosphere must have slowly accumulated through time starting with an atmosphere that was anoxic during Archean times. Although volcanoes (volcano) exhale much water vapour (H2O) and carbon dioxide (CO2), the amount of free oxygen (O2) emitted is very small. The inorganic breakdown (photodissociation) of volcanic-derived water vapour and carbon dioxide in the atmosphere would have produced only a small amount of free oxygen. The bulk of the free oxygen in the Archean atmosphere was derived from organic photosynthesis of carbon dioxide (CO2) and water (H2O) by anaerobic cyanobacteria (blue-green algae) (blue-green algae), a process that releases oxygen as a by-product. These organisms were prokaryotes (prokaryote), a group of unicellular organisms with rudimentary internal organization.

      Archean oceans were likely created by the condensation of water derived from the outgassing of abundant volcanoes. Iron was released then (as today) into the oceans from submarine volcanoes in oceanic ridges and during the creation of thick oceanic plateaus. This ferrous iron (Fe2+) combined with oxygen and was precipitated as ferric iron in hematite (Fe2O3), which produced banded-iron formations (banded-iron formation) on the flanks of the volcanoes. The transfer of biologically produced oxygen from the atmosphere to the sediments was beneficial to the photosynthetic organisms, because at the time free oxygen was toxic to them. When banded-iron formations were being deposited, oxygen-mediating enzymes (enzyme) had not yet developed. Therefore, this removal of oxygen allowed early anaerobes (life-forms not requiring oxygen for respiration) to develop in the early oceans of the Earth.

      Carbon dioxide emissions are abundant from modern volcanoes, and it is assumed that the intense volcanism during the Archean Eon caused this gas to be highly concentrated in the atmosphere. This high concentration most likely gave rise to an atmospheric greenhouse effect that warmed the Earth's surface sufficiently to prevent the development of glaciations, for which there is no evidence in Archean rocks. The CO2 content in the atmosphere has decreased over geological time, because much of the oxygen formerly bound in CO2 has been released to provide increasing amounts of O2 to the atmosphere. In contrast, carbon has been removed from the atmosphere via the burial of organic sediments.

      Throughout the Archean, oceanic (ocean) and island arc crust was produced semi-continuously for 1.5 billion years; thus, most Archean rocks are igneous (igneous rock). The oldest known rocks on Earth, estimated at 4.28 billion years old, are the faux amphibolite volcanic deposits of the Nuvvuagittuq greenstone belt in Quebec, Canada. The second oldest rocks are the 4-billion-year-old Acasta granitic (granite) gneisses (gneiss) in northwestern Canada, and a single relict zircon grain dated to 4.2 billion years ago was found within these gneisses. Other ancient sediments and lavas occur in the 3.85-billion-year-old Isua belt of western Greenland (which is similar to an accretionary wedge in the trench of a modern subduction zone) and the 3.5-billion-year-old Barberton Complex in South Africa, which is probably a slice of oceanic crust (ocean). A huge pulse in the formation of island arcs and oceanic plateaus took place worldwide from 2.9 to 2.7 billion years ago.

      Archean rocks mostly occur in large blocks hundreds to thousands of kilometres across, such as in the Superior and Slave provinces in Canada; the Pilbara and Yilgarn blocks in Australia; the Kaapvaal craton in southern Africa; the Dharwar craton in India; the Baltic, Anabar, and Aldan shields in Russia; and the North China craton. Smaller relicts of Archean rocks in various stages of obliteration occur in many younger Proterozoic and Phanerozoic (Phanerozoic Eon) orogenic (Precambrian time) (mountain) belts. Some Archean rocks that occur in greenstone-granite belts (zones rich in volcanic rocks that are primitive types of oceanic crust and island arcs) formed on or near the surface of the Earth and thus preserve evidence of the early atmosphere, oceans, and life-forms. Other rocks that occur in granulite-gneiss belts (zones of rocks that were metamorphosed in the Archean mid-lower crust) are exhumed remnants of the lower parts of the Archean continents and thus preserve evidence of deep crustal processes operating at the time.

      In greenstone-granite belts there are many oceanic lavas, island arcs, and oceanic plateaus; therefore, they commonly contain rock types such as basalts (basalt), andesites (andesite), rhyolites (rhyolite), granitic plutons, oceanic cherts, and ultramafic komatiites (lavas enriched in magnesium, a special product of the melting of the hot Archean mantle). These igneous rocks are host to multitudes of economic mineral deposits of gold, silver, chromium, nickel, copper, and zinc, which are the mainstay of the economies of Canada, Australia, and Zimbabwe.

      In granulite-gneiss belts the roots of many Andean-type active continental margins are exposed, the rocks being highly deformed and recrystallized during metamorphism in the deep crust. Common rocks are tonalites (a granitic-type rock rich in plagioclase feldspar (plagioclase)) transformed into tonalitic gneisses, amphibolite dikes, and amphibolites derived from volcanic activity. Few mineral deposits occur in granulite-gneiss belts, in common with the deep crust of younger orogenic belts, which are relatively barren of ore concentrations.

Brian Frederick Windley

* * *

Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Archean eon — noun the time from 3,800 million years to 2,500 million years ago; earth s crust formed; unicellular organisms are earliest forms of life • Syn: ↑Archean, ↑Archean aeon, ↑Archeozoic, ↑Archaeozoic, ↑Archeozoic eon, ↑Archaeozoic aeon •… …   Useful english dictionary

  • Eón Arcaico — Saltar a navegación, búsqueda Supereón Eón M. años   Fanerozoico 542,0 ±1,0 Precámbrico Proterozoico 2.500 …   Wikipedia Español

  • Archean — [är kē′ən] adj. [< Gr archaios, ARCHAIC] [sometimes a ] designating or of the geologic eon characterized by the development of the first igneous and metamorphic rocks and the first marine microorganisms; Precambrian, esp. early Precambrian… …   English World dictionary

  • Archean — The Archean (pronEng|ɑrˈkiːən, also spelled Archaean, formerly called the Archaeozoic (IPA|/ɑrkiəˈzoʊɪk/), also spelled Archeozoic or Archæozoic) is a geologic eon before the Proterozoic and Paleoproterozoic, before 2.5 Ga (billion years ago, or… …   Wikipedia

  • Archean aeon — noun the time from 3,800 million years to 2,500 million years ago; earth s crust formed; unicellular organisms are earliest forms of life • Syn: ↑Archean, ↑Archean eon, ↑Archeozoic, ↑Archaeozoic, ↑Archeozoic eon, ↑Archaeozoic aeon •… …   Useful english dictionary

  • eon — /ee euhn, ee on/, n. 1. an indefinitely long period of time; age. 2. the largest division of geologic time, comprising two or more eras. 3. Astron. one billion years. Also, aeon. [see AEON] * * * I Long span of geologic time. In formal usage,… …   Universalium

  • Archean — or Archaean adjective Etymology: Greek archaios Date: 1872 1. of, relating to, or being the earliest eon of geological history or the corresponding system of rocks see geologic time table 2. Precambrian • Archean noun …   New Collegiate Dictionary

  • Archeozoic eon — noun the time from 3,800 million years to 2,500 million years ago; earth s crust formed; unicellular organisms are earliest forms of life • Syn: ↑Archean, ↑Archean eon, ↑Archean aeon, ↑Archeozoic, ↑Archaeozoic, ↑Archaeozoic aeon • Derivationally… …   Useful english dictionary

  • Precambrian eon — noun the eon following the Hadean time and preceding the Phanerozoic eon; from about 3,800 million years ago until 544 million years ago • Syn: ↑Precambrian, ↑Precambrian aeon, ↑Precambrian period • Instance Hypernyms: ↑eon, ↑aeon • Part Meron …   Useful english dictionary

  • Proterozoic Eon — Younger of the two divisions of Precambrian time, from 2. 5 billion to 543 million years ago. Proterozoic rocks have been identified on all the continents and often constitute important sources of metallic ores, notably of iron, gold, copper,… …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”