space-time

space-time
/spays"tuym"/, n.
1. Also called space-time continuum. the four-dimensional continuum, having three spatial coordinates and one temporal coordinate, in which all physical quantities may be located.
2. the physical reality that exists within this four-dimensional continuum.
adj.
3. of, pertaining to, or noting a system with three spatial coordinates and one temporal coordinate.
4. noting, pertaining to, or involving both space and time: a space-time problem.
[1910-15]

* * *

Single entity that relates space and time in a four-dimensional structure, postulated by Albert Einstein in his theories of relativity.

In the Newtonian universe it was supposed that there was no connection between space and time. Space was thought to be a flat, three-dimensional arrangement of all possible point locations, which could be expressed by Cartesian coordinates; time was viewed as an independent one-dimensional concept. Einstein showed that a complete description of relative motion requires equations that include time as well as the three spatial dimensions. He also showed that space-time is curved, which allowed him to account for gravitation in his general theory of relativity.

* * *

      in physical science, single concept that recognizes the union of space and time, posited by Albert Einstein in the theories of relativity (1905, 1916).

      Common intuition previously supposed no connection between space and time. Physical space was held to be a flat, three-dimensional continuum—i.e., an arrangement of all possible point locations—to which Euclidean postulates would apply. To such a spatial manifold, Cartesian coordinates seemed most naturally adapted, and straight lines could be conveniently accommodated. Time was viewed independent of space—as a separate, one-dimensional continuum, completely homogeneous along its infinite extent. Any “now” in time could be regarded as an origin from which to take duration past or future to any other time instant. Within a separately conceived space and time, from the possible states of motion one could not find an absolute state of rest. Uniformly moving spatial coordinate systems attached to uniform time continua represented all unaccelerated motions, the special class of so-called inertial reference frames. The universe according to this convention was called Newtonian.

      By use of a four-dimensional space-time continuum, another well-defined flat geometry, the Minkowski universe (after Hermann Minkowski), can be constructed. In that universe, the time coordinate of one coordinate system depends on both the time and space coordinates of another relatively moving system, forming the essential alteration required for Einstein's special theory of relativity. The Minkowski universe, like its predecessor, contains a distinct class of inertial reference frames and is likewise not affected by the presence of matter (masses) within it. Every set of coordinates, or particular space-time event, in such a universe is described as a “here-now” or a world point. Apparent space and time intervals between events depend upon the velocity of the observer, which cannot, in any case, exceed the velocity of light. In every inertial reference frame, all physical laws remain unchanged.

      A further alteration of this geometry, locally resembling the Minkowski universe, derives from the use of a four-dimensional continuum containing mass points. This continuum is also non-Euclidean, but it allows for the elimination of gravitation as a dynamical force and is used in Einstein's general theory of relativity (1916). In this general theory, the continuum still consists of world points that may be identified, though non-uniquely, by coordinates. Corresponding to each world point is a coordinate system such that, within the small, local region containing it, the time of special relativity will be approximated. Any succession of these world points, denoting a particle trajectory or light ray path, is known as a world line, or geodesic. Maximum velocities relative to an observer are still defined as the world lines of light flashes, at the constant velocity c.

      Whereas the geodesics of a Minkowski continuum (without mass-point accelerations) are straight lines, those of a general relativistic, or Riemannian, universe containing local concentrations of mass are curved; and gravitational fields can be interpreted as manifestations of the space-time curvature. However, one can always find coordinate systems in which, locally, the gravitational field strength is nonexistent. Such a reference frame, affixed to a selected world point, would naturally be in free-fall acceleration near a concentrated mass. Only in this region is the concept well defined—i.e., in the neighbourhood of the world point, in a limited region of space, for a limited duration. Its free-fall toward the mass is due either to an externally produced gravitational field or to the equivalent, an intrinsic property of inertial reference frames. Mathematically, gravitational potentials in the Riemannian space can be evaluated by the procedures of tensor analysis to yield a solution of the Einstein gravitational field equations outside the mass points themselves, for any particular distribution of matter.

      The first rigorous solution, for a single spherical mass, was carried out by a German astronomer, Karl Schwarzschild (Schwarzschild, Karl) (1916). For so-called small masses, the solution does not differ appreciably from that afforded by Newton's gravitational law; but for “large” masses the radius of space-time curvature may approach or exceed that of the physical object, and the Schwarzschild solution predicts unusual properties. Astronomical observations of dwarf stars eventually led the American physicists J. Robert Oppenheimer and H. Snyder (1939) to postulate super-dense states of matter. These, and other hypothetical conditions of gravitational collapse, were borne out in later discoveries of pulsars and neutron stars. They also have a bearing on black holes thought to exist in interstellar space. Other implications of space-time are important cosmologically and to unified field theory.

* * *


Universalium. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • space-time — space time, n. the four dimensional coordinate system in which all physical objects of the known universe are located, and in which all physical events occur; it consists of three spatial dimensions and one time dimension; also called the {space… …   The Collaborative International Dictionary of English

  • space-time — noun Date: 1915 1. a system of one temporal and three spatial coordinates by which any physical object or event can be located called also space time continuum 2. the whole or a portion of physical reality determinable by a usually four… …   New Collegiate Dictionary

  • Space–time trellis code — Space–time trellis codes (STTCs) are a type of space–time code used in multiple antenna wireless communications. This scheme transmits multiple, redundant copies of a trellis (or convolutional) code distributed over time and a number of antennas… …   Wikipedia

  • Space-time adaptive processing — (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e.… …   Wikipedia

  • space-time continuum — space time space time, n. the four dimensional coordinate system in which all physical objects of the known universe are located, and in which all physical events occur; it consists of three spatial dimensions and one time dimension; also called… …   The Collaborative International Dictionary of English

  • Space–time block code — This article deals with coherent space–time block codes (STBCs). For differential space–time block codes, see differential space–time codes.Space–time block coding is a technique used in wireless communications to transmit multiple copies of a… …   Wikipedia

  • Space-time tradeoff — In computer science, a space time or time memory tradeoff is a situation where the memory use can be reduced at the cost of slower program execution, or vice versa, the computation time can be reduced at the cost of increased memory use. As the… …   Wikipedia

  • Space–time code — A space ndash;time code (STC) is a method employed to improve the reliability of data transmission in wireless communication systems using multiple transmit antennas. STCs rely on transmitting multiple, redundant copies of a data stream to the… …   Wikipedia

  • space-time continuum — noun see space time …   New Collegiate Dictionary

  • Differential space–time code — Differential space–time codes[1][2] are ways of transmitting data in wireless communications. They are forms of space–time code that do not need to know the channel impairments at the receiver in order to be able to decode the signal. They are… …   Wikipedia

  • Space — is the extent within which matter is physically extended and objects and events have positions relative to one another [ [http://www.britannica.com/eb/article 9068962/space Britannica Online Encyclopedia: Space] ] . Physical space is often… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”