Gödel,Kurt

Gödel,Kurt
Gö·del (gœdʹl), Kurt. 1906-1978.
Czech-born American mathematician and logician best known for his proof that the consistency of a mathematical system in which the truths of arithmetic can be expressed cannot be proven from within that system (1931).

* * *


Universalium. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Gödel, Kurt — born April 28, 1906, Brünn, Austria Hungary died Jan. 14, 1978, Princeton, N.J., U.S. Austrian born U.S. mathematician and logician. He began his career on the faculty of the University of Vienna, where he produced his groundbreaking proof (see… …   Universalium

  • Gödel, Kurt — (1906–1978) Mathematical logician. Born to German speaking parents in Czechoslovakia, Gödel studied mathematics at the university of Vienna, where he also came into contact with the Vienna circle (see logical positivism ). His ground breaking… …   Philosophy dictionary

  • Gödel , Kurt — (1906–1978) Austrian–American mathematician Born in Brünn (now Brno in the Czech Republic), Gödel initially studied physics at the University of Vienna, but his interest soon turned to mathematics and mathematical logic. He obtained his PhD in… …   Scientists

  • Gödel, Kurt — ► (1906 78) Lógico y matemático checo. Autor de numerosos teoremas de consistencia, completitud y decibilidad de ciertas teorías matemáticas. * * * (28 abr. 1906, Brünn, Austria Hungría–14 ene. 1978, Princeton, N.J., EE.UU.). Matemático y lógico… …   Enciclopedia Universal

  • Gödel — Gödel, Kurt …   Philosophy dictionary

  • Gödel's — Gödel, Kurt …   Philosophy dictionary

  • Godel — Gödel , Kurt …   Scientists

  • Gödel — Kurt …   Scientists

  • Gödel — Gödel, Kurt …   Enciclopedia Universal

  • Gödel — Kurt Gödel Kurt Gödel Kurt Gödel (28 avril 1906 14 janvier 1978) est un mathématicien et logicien austro américain. Son résultat le plus connu, le théorème d incomplétude de Gödel, affirme q …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”