# prime number theorem

prime number theorem
the theorem that the number of prime numbers less than or equal to a given number is approximately equal to the given number divided by its natural logarithm.
[1660-70]

* * *

formula that gives an approximate value for the number of primes (prime) less than or equal to any given positive real number x. The usual notation for this number is π(x), so that π(2) = 1, π(3.5) = 2, and π(10) = 4. The prime number theorem states that for large values of x, π(x) is approximately equal to x/ln(x). The table—> compares the actual and predicted number of primes for various values of x.

Ancient Greek mathematicians were the first to study the mathematical properties of prime numbers. (Earlier many people had studied such numbers for their supposed mystical or spiritual qualities.) While many people noticed that the primes seem to “thin out” as the numbers get larger, Euclid in his Elements (c. 300 BC) may have been the first to prove that there is no largest prime; in other words, there are infinitely many primes. Over the ensuing centuries, mathematicians sought, and failed, to find some formula with which they could produce an unending sequence of primes. Failing in this quest for an explicit formula, others began to speculate about formulas that could describe the general distribution of primes. Thus, the prime number theorem first appeared in 1798 as a conjecture by the French mathematician Adrien-Marie Legendre (Legendre, Adrien-Marie). On the basis of his study of a table of primes up to 1,000,000, Legendre stated that if x is not greater than 1,000,000, then x/(ln(x) − 1.08366) is very close to π(x). This result—indeed with any constant, not just 1.08366—is essentially equivalent to the prime number theorem, which states the result for constant 0. It is now known, however, that the constant that gives the best approximation to π(x), for relatively small x, is 1.

The great German mathematician Carl Friedrich Gauss (Gauss, Carl Friedrich) also conjectured an equivalent of the prime number theorem in his notebook, perhaps prior to 1800. However, the theorem was not proved until 1896, when the French mathematicians Jacques-Salomon Hadamard (Hadamard, Jacques-Salomon) and Charles de la Valée Poussin independently showed that in the limit (as x increases to infinity) the ratio x/ln(x) equals π(x).

Although the prime number theorem tells us that the difference between π(x) and x/ln(x) becomes vanishingly small relative to the size of either of these numbers as x gets large, one can still ask for some estimate of that difference. The best estimate of this difference is conjectured to be given by √x ln(x).

* * *

Universalium. 2010.

### Look at other dictionaries:

• Prime number theorem — PNT redirects here. For other uses, see PNT (disambiguation). In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers. The prime number theorem gives a general description of how the primes are… …   Wikipedia

• prime number theorem — noun a theorem which states that the larger the number, the less the chance that it will be a prime number …

• prime number theorem — Math. the theorem that the number of prime numbers less than or equal to a given number is approximately equal to the given number divided by its natural logarithm. [1660 70] …   Useful english dictionary

• Prime number — Prime redirects here. For other uses, see Prime (disambiguation). A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a prime number is… …   Wikipedia

• Prime number theory — may refer to:* Prime number * Prime number theorem * Number theory …   Wikipedia

• Prime ideal theorem — In mathematics, the prime ideal theorem may be * the Boolean prime ideal theorem * the Landau prime ideal theorem on number fields …   Wikipedia

• prime number — Math. a positive integer that is not divisible without remainder by any integer except itself and 1, with 1 often excluded: The integers 2, 3, 5, and 7 are prime numbers. Also called prime. [1585 95] * * * Any positive integer greater than 1 and… …   Universalium

• Landau prime ideal theorem — In mathematics, the prime ideal theorem of algebraic number theory is the number field generalization of the prime number theorem. It provides an asymptotic formula for counting the number of prime ideals of a number field K , with norm at most X …   Wikipedia

• Boolean prime ideal theorem — In mathematics, a prime ideal theorem guarantees the existence of certain types of subsets in a given abstract algebra. A common example is the Boolean prime ideal theorem, which states that ideals in a Boolean algebra can be extended to prime… …   Wikipedia

• Waring's prime number conjecture — In mathematics, Waring s prime number conjecture is a conjecture in number theory, closely related to Vinogradov s theorem. The conjecture is named after the English mathematician Edward Waring and states that every odd integer is either a prime… …   Wikipedia