plastic

plastic
plastically, plasticly, adv.
/plas"tik/, n.
1. Often, plastics. any of a group of synthetic or natural organic materials that may be shaped when soft and then hardened, including many types of resins, resinoids, polymers, cellulose derivatives, casein materials, and proteins: used in place of other materials, as glass, wood, and metals, in construction and decoration, for making many articles, as coatings, and, drawn into filaments, for weaving. They are often known by trademark names, as Bakelite, Vinylite, or Lucite.
2. a credit card, or credit cards collectively, usually made of plastic: He had a whole pocketful of plastic.
3. money, payment, or credit represented by the use of a credit card or cards.
4. something, or a group of things, made of or resembling plastic: The entire meal was served on plastic.
adj.
5. made of plastic.
6. capable of being molded or of receiving form: clay and other plastic substances.
7. produced by molding: plastic figures.
8. having the power of molding or shaping formless or yielding material: the plastic forces of nature.
9. being able to create, esp. within an art form; having the power to give form or formal expression: the plastic imagination of great poets and composers.
10. Fine Arts.
a. concerned with or pertaining to molding or modeling; sculptural.
b. relating to three-dimensional form or space, esp. on a two-dimensional surface.
c. pertaining to the tools or techniques of drawing, painting, or sculpture: the plastic means.
d. characterized by an emphasis on formal structure: plastic requirements of a picture.
11. pliable; impressionable: the plastic mind of youth.
12. giving the impression of being made of or furnished with plastic: We stayed at one of those plastic motels.
13. artificial or insincere; synthetic; phony: jeans made of cotton, not some plastic substitute; a plastic smile.
14. lacking in depth, individuality, or permanence; superficial, dehumanized, or mass-produced: a plastic society interested only in material acquisition.
15. of or pertaining to the use of credit cards: plastic credit; plastic money.
16. Biol., Pathol. formative.
17. Surg. concerned with or pertaining to the remedying or restoring of malformed, injured, or lost parts: a plastic operation.
[1625-35; 1900-10 for def. 1; < L plasticus that may be molded < Gk plastikós. See -PLAST, -IC]
Syn. 11. pliant, flexible, amenable.

* * *

Introduction

      polymeric material that has the capability of being molded or shaped, usually by the application of heat and pressure. This property of plasticity, often found in combination with other special properties such as low density, low electrical conductivity, transparency, and toughness, allows plastics to be made into a great variety of products. These include tough and lightweight beverage bottles made of polyethylene terephthalate, flexible garden hoses made of polyvinyl chloride, insulating food containers made of foamed polystyrene, and shatterproof windows made of polymethyl methacrylate. In this article a brief review of the essential properties of plastics is provided, followed by a more detailed description of their processing into useful products and subsequent recycling. For a fuller understanding of the materials from which plastics are made, the reader is advised to begin with the article industrial polymers, chemistry of.

The composition, structure, and properties of plastics
      Many of the chemical names of the polymers employed as plastics have become familiar to consumers, although some are better known by their abbreviations or trade names. Thus, polyethylene terephthalate and polyvinyl chloride are commonly referred to as PET and PVC, while foamed polystyrene and polymethyl methacrylate are known by their trademarked names, Styrofoam and Plexiglas (or Perspex).

      Industrial fabricators of plastic products tend to think of plastics as either “commodity” resins or “specialty” resins. (The term resin dates from the early years of the plastics industry; it originally referred to naturally occurring amorphous solids such as shellac and rosin.) Commodity resins are plastics that are produced at high volume and low cost for the most common disposable items and durable goods. They are represented chiefly by polyethylene, polypropylene, polyvinyl chloride, and polystyrene. Specialty resins are plastics whose properties are tailored to specific applications and that are produced at low volume and higher cost. Among this group are the so-called engineering plastics, or engineering resins, which are plastics that can compete with die-cast metals in plumbing, hardware, and automotive applications. Important engineering plastics, less familiar to consumers than the commodity plastics listed above, are: polyacetal, polyamide (particularly those known by the trade name nylon), polytetrafluoroethylene (trademark Teflon), polycarbonate, polyphenylene sulfide, epoxy, and polyetheretherketone. Another member of the specialty resins is thermoplastic elastomers, polymers that have the elastic properties of rubber yet can be molded repeatedly upon heating. Thermoplastic elastomers are described in the article elastomer (natural and synthetic rubber) (elastomer).

      Plastics also can be divided into two distinct categories on the basis of their chemical composition. One category is plastics that are made up of polymers having only aliphatic (linear) carbon atoms in their backbone chains. All the commodity plastics listed above fall into this category. The other category of plastics is made up of heterochain polymers. These compounds contain atoms such as oxygen, nitrogen, or sulfur in their backbone chains, in addition to carbon. Most of the engineering plastics listed above are composed of heterochain polymers.

       Properties and Applications of Commercially Important Plastics, TableThe distinction between carbon-chain and heterochain polymers is reflected in Table 1 (Properties and Applications of Commercially Important Plastics, Table), in which selected properties and applications of the most important carbon-chain and heterochain plastics are shown and from which links are provided directly to entries that describe these materials in greater detail. It is important to note that for each polymer type listed in the table there can be many subtypes, since any of a dozen industrial producers of any polymer can offer 20 or 30 different variations for use in specific applications. For this reason the properties indicated in the table must be taken as approximations.

       Properties and Applications of Commercially Important Plastics, TableFor the purposes of this article, plastics are primarily defined not on the basis of their chemical composition but on the basis of their engineering behaviour. More specifically, they are defined as either thermoplastic resins or thermosetting resins. This fundamental distinction is seen in the organization of Table 1 (Properties and Applications of Commercially Important Plastics, Table), and its origin in the chemical composition and molecular structure of plastic polymers (polymer) is described below.

The polymers
      Polymers are chemical compounds whose molecules (macromolecule) are very large, often resembling long chains made up of a seemingly endless series of interconnected links. As is explained in industrial polymers, chemistry of, the size of these molecules is extraordinary, ranging in the thousands and even millions of atomic mass units (as opposed to the tens of atomic mass units commonly found in other chemical compounds). The size of the molecules, together with their physical state and the structures that they adopt, are the principal causes of the unique properties associated with plastics—including the ability to be molded and shaped.

Thermoplastic and thermosetting
      As mentioned above, polymers that are classified as plastics can be divided into two major categories: thermoplastics and thermosets. Thermoplastics such as polyethylene and polystyrene are capable of being molded and remolded repeatedly. Thus, a foamed-polystyrene cup can be heated and reshaped into a new form—for instance, a dish. The polymer structure associated with thermoplastics is that of individual molecules that are separate from one another and flow past one another. The molecules may have low or extremely high molecular weight, and they may be branched or linear in structure, but the essential feature is that of separability and consequent mobility.

      Thermosets, on the other hand, cannot be reprocessed upon reheating. During their initial processing, thermosetting resins undergo a chemical reaction that results in an infusible, insoluble network. Essentially, the entire heated, finished article becomes one large molecule. For example, the epoxy polymer used in making a fibre-reinforced laminate (lamination) for a golf club undergoes a cross-linking reaction when it is molded at a high temperature. Subsequent application of heat does not soften the material to the point where it can be reworked and indeed may serve only to break it down.

Physical states and molecular morphologies
  Properties and Applications of Commercially Important Plastics, TableThe plastic behaviour of polymers is also influenced by their morphology, or arrangement of molecules on a large scale. Stated simply, polymer morphologies are either amorphous or crystalline. Amorphous molecules are arranged randomly and are intertwined, whereas crystalline molecules are arranged closely and in a discernible order. Most thermosets are amorphous, while thermoplastics may be amorphous or semicrystalline. Semicrystalline materials display crystalline regions, called crystallites (crystallite), within an amorphous matrix; this morphology is illustrated in Figure 2—> from industrial polymers, chemistry of. In addition, the relative crystallinities of the major plastics are indicated in Table 1 (Properties and Applications of Commercially Important Plastics, Table).

 By definition, thermoplastic materials retain their molded shapes up to a certain temperature, which is set by the glass transition temperature or the melting temperature of the particular polymer. As is shown in Figure 2—> of the article industrial polymers, chemistry of, below a certain temperature, known as the glass transition temperature (Tg), the molecules of a polymer material are frozen in what is known as the glassy state; there is little or no movement of molecules past one another, and the material is stiff and even brittle. Above Tg the amorphous parts of the polymer enter the rubbery (rubber) state, in which the molecules display increased mobility and the material becomes plastic and even elastic (that is, able to be stretched). In the case of noncrystalline polymers such as polystyrene, raising the temperature further leads directly to the liquid state. On the other hand, for partly crystalline polymers such as low-density polyethylene or polyethylene terephthalate, the liquid state is not reached until the melting (melting point) temperature (Tm) is passed. Beyond this point the crystalline regions are no longer stable, and the rubbery or liquid polymers can be molded or extruded. Thermosets, which do not melt upon reheating, can be dimensionally stable up to a temperature at which chemical degradation begins.

Properties
      The physical state and morphology of a polymer have a strong influence on its mechanical properties. A simple measure of the differences produced in mechanical behaviour is the elongation that occurs when a plastic is loaded (stressed) in tension. A glassy polymer such as polystyrene is quite stiff, showing a high ratio of initial stress to initial elongation. On the other hand, polyethylene and polypropylene, two highly crystalline plastics, are usable as films and molded objects because at room temperature their amorphous regions are well above their glass transition temperatures. The leathery toughness of these polymers above Tg results from the crystalline regions that exist in an amorphous, rubbery matrix. Elongations of 100 to 1,000 percent are possible with these plastics. In PET, another semicrystalline plastic, the crystalline portions exist in a glassy matrix because the Tg of PET is above room temperature. This gives the material a stiffness and high dimensional stability under stress that are of great importance in beverage bottles and recording tape.

      Almost all plastics exhibit some elongation on being stressed that is not recovered when the stress is removed. This behaviour, known as “creep,” may be very small for a plastic that is well below its Tg, but it can be significant for a partly crystalline plastic that is above Tg.

      The most commonly specified mechanical properties of polymers include stiffness and breaking stress, quantified in Table 1 as flexural modulus and tensile strength. Another important property is toughness, which is the energy absorbed by a polymer before failure—often as the result of a sudden impact. Repeated applications of stress well below the tensile strength of a plastic may result in fatigue failure.

      Most plastics are poor conductors of heat; conductivity (thermal conduction) can be reduced even further by incorporating a gas (usually air) into the material. For instance, foamed polystyrene used in cups for hot beverages has a thermal conductivity about one-quarter that of the unfoamed polymer. Plastics also are electrical insulators unless especially designed for conductivity. Besides conductivity, important electrical properties include dielectric strength (resistance to breakdown at high voltages) and dielectric loss (a measure of the energy dissipated as heat when an alternating current is applied).

Additives
      In many plastic products, the polymer is only one constituent. In order to arrive at a set of properties appropriate to the product, the polymer is almost always combined with other ingredients, or additives, which are mixed in during processing and fabrication. Among these additives are plasticizers, colorants, reinforcements, and stabilizers. These are described in turn below.

Plasticizers
      Plasticizers are used to change the Tg of a polymer. polyvinyl chloride (PVC), for instance, is often mixed with nonvolatile liquids for this reason. Vinyl siding used on homes requires an unplasticized, rigid PVC with a Tg of 85° to 90° C (185° to 195° F). A PVC garden hose, on the other hand, should remain flexible even at 0° C (32° F). A mixture of 30 parts di(2-ethylhexyl) phthalate (also called dioctyl phthalate, or DOP) with 70 parts PVC will have a Tg of about −10° C (15° F), making it suitable for use as a garden hose.

      Although other polymers can be plasticized, PVC is unique in accepting and retaining plasticizers of widely varying chemical composition and molecular size. The plasticizer may also change the flammability, odour, biodegradability, and cost of the finished product.

Colorants (pigment)
      For most consumer applications, plastics are coloured. The ease with which colour is incorporated throughout a molded article is an advantage of plastics over metals and ceramics, which depend on coatings for colour. Popular pigments for colouring plastics include titanium dioxide and zinc oxide (white), carbon (black), and various other inorganic oxides such as iron and chromium. Organic compounds can be used to add colour either as pigments (insoluble) or as dyes (soluble).

Reinforcements
      Reinforcements, as the name suggests, are used to enhance the mechanical properties of a plastic. Finely divided silica, carbon black, talc, mica, and calcium carbonate, as well as short fibres of a variety of materials, can be incorporated as particulate fillers. (The use of long or even continuous fibres as reinforcement, especially with thermosets, is described below in Fibre reinforcement (plastic).) Incorporating large amounts of particulate filler during the making of plastics such as polypropylene and polyethylene can increase their stiffness. The effect is less dramatic when temperature is below the polymer's Tg.

Stabilizers
      In order for a plastic to have a long and useful life in any application, the properties of that plastic should change as little as possible with time. Stabilizers are added, usually in small quantities, to counter the effects of aging.

      Because all carbon-based polymers are subject to oxidation, the most common stabilizers are antioxidants (antioxidant). Hindered phenols and tertiary amines are used in plastics in concentrations as low as a few parts per million. For example, butylated hydroxytoluene (BHT) is used in polyolefin packaging films for foods and pharmaceuticals. PVC requires the addition of heat stabilizers in order to reduce dehydrohalogenation (loss of hydrogen chloride [HCl]) at processing temperatures. Zinc and calcium soaps, organotin mercaptides, and organic phosphites are among the many additives found to be effective. Other stabilizers are designed specifically to reduce degradation by sunlight, ozone, and biological agents.

The processing and fabrication of plastics
      The processing of raw materials into usable forms is termed fabrication or conversion. An example from the plastics industry would be the conversion of plastic pellets into films or the conversion of films into food containers. In this section the mixing, forming, finishing, and fibre reinforcing of plastics are described in turn.

Compounding
      The first step in most plastic fabrication procedures is compounding, the mixing together of various raw materials in proportions according to a specific recipe. Most often the plastic resins are supplied to the fabricator as cylindrical pellets (several millimetres in diameter and length) or as flakes and powders. Other forms include viscous liquids, solutions, and suspensions.

      Mixing liquids with other ingredients may be done in conventional stirred tanks, but certain operations demand special machinery. Dry blending refers to the mixing of dry ingredients prior to further use, as in mixtures of pigments, stabilizers, or reinforcements. However, PVC as a porous powder can be combined with a liquid plasticizer in an agitated trough called a ribbon blender or in a tumbling container. This process also is called dry blending, because the liquid penetrates the pores of the resin, and the final mixture, containing as much as 50 percent plasticizer, is still a free-flowing powder that appears to be dry.

 The workhorse mixer of the plastics and rubber industries is the internal mixer, in which heat and pressure are applied simultaneously. The Banbury ® mixer, shown in Figure 1—>, resembles a robust dough mixer in that two interrupted spiral rotors move in opposite directions at 30 to 40 rotations per minute. The shearing action is intense, and the power input can be as high as 1,200 kilowatts for a 250-kilogram (550-pound) batch of molten resin with finely divided pigment.

      In some cases, mixing may be integrated with the extrusion or molding step, as in twin-screw extruders.

Forming
      The process of forming plastics into various shapes typically involves the steps of melting, shaping, and solidifying. As an example, polyethylene pellets can be heated above Tm, placed in a mold under pressure, and cooled to below Tm in order to make the final product dimensionally stable. Thermoplastics in general are solidified by cooling below Tg or Tm. Thermosets are solidified by heating in order to carry out the chemical reactions necessary for network formation.

 In extrusion, a melted polymer is forced through an orifice with a particular cross section (the die), and a continuous shape is formed with a constant cross section similar to that of the orifice. A longitudinal section of a screw extruder is shown in Figure 2A—>. Although thermosets can be extruded and cross-linked by heating the extrudate, thermoplastics that are extruded and solidified by cooling are much more common. Among the products that can be produced by extrusion are film, sheet, tubing, pipes, insulation, and home siding. In each case the profile is determined by the die geometry, and solidification is by cooling.

 Most plastic grocery bags and similar items are made by the continuous extrusion of tubing. As shown in Figure 2B—>, the tube is expanded before being cooled by being made to flow around a massive air bubble. Air is prevented from escaping from the bubble by collapsing the film on the other side of the bubble. For some applications, laminated structures may be made by extruding more than one material at the same time through the same die or through multiple dies. Multilayer films are useful since the outer layers may contribute strength and moisture resistance while an inner layer may control oxygen permeability—an important factor in food packaging. The layered films may be formed through blow extrusion, or extrudates from three machines may be pressed together in a die block to form a three-layer flat sheet that is subsequently cooled by contact with a chilled roll.

      The flow through a die in extrusion always results in some orientation of the polymer molecules. Orientation may be increased by drawing—that is, pulling on the extrudate in the direction of polymer flow or in some other direction either before or after partial solidification. In the blow extrusion process, polymer molecules are oriented around the circumference of the bag as well as along its length, resulting in a biaxially oriented structure that often has superior mechanical properties over the unoriented material.

      In the simplest form of compression molding, a molding powder (or pellets, which are also sometimes called molding powder) is heated and at the same time compressed into a specific shape. In the case of a thermoset, the melting must be rapid, since a network starts to form immediately, and it is essential for the melt to fill the mold completely before solidification progresses to the point where flow stops. The highly cross-linked molded article can be removed without cooling the mold. Adding the next charge to the mold is facilitated by compressing the exact required amount of cold molding powder into a preformed “biscuit.” Also, the biscuit can be preheated by microwave energy to near the reaction temperature before it is placed in the mold cavity. A typical heater, superficially resembling a microwave oven, may apply as much as 10 kilovolts at a frequency of one megahertz. Commercial molding machines use high pressures and temperatures to shorten the cycle time for each molding. The molded article is pushed out of the cavity by the action of ejector pins, which operate automatically when the mold is opened.

      In some cases, pushing the resin into the mold before it has liquefied may cause undue stresses on other parts. For example, metal inserts to be molded into a plastic electrical connector may be bent out of position. This problem is solved by transfer molding, in which the resin is liquefied in one chamber and then transferred to the mold cavity.

      In one form of compression molding, a layer of reinforcing material may be laid down before the resin is introduced. The heat and pressure not only form the mass into the desired shape but also combine the reinforcement and resin into an intimately bound form. When flat plates are used as the mold, sheets of various materials can be molded together to form a laminated (lamination) sheet. Ordinary plywood is an example of a thermoset-bound laminate. In plywood, layers of wood are both adhered to one another and impregnated by a thermoset such as urea-formaldehyde, which forms a network on heating.

 It is usually slow and inefficient to mold thermoplastics using the compression molding techniques described above. In particular, it is necessary to cool a thermoplastic part before removing it from the mold, and this requires that the mass of metal making up the mold also be cooled and then reheated for each part. Injection molding is a method of overcoming this inefficiency. Injection molding resembles transfer molding in that the liquefying of the resin and the regulating of its flow is carried out in a part of the apparatus that remains hot, while the shaping and cooling is carried out in a part that remains cool. In a reciprocating screw injection molding machine (shown in Figure 3—>), material flows under gravity from the hopper onto a turning screw. The mechanical energy supplied by the screw, together with auxiliary heaters, converts the resin into a molten state. At the same time the screw retracts toward the hopper end. When a sufficient amount of resin is melted, the screw moves forward, acting as a ram and forcing the polymer melt through a gate into the cooled mold. Once the plastic has solidified in the mold, the mold is unclamped and opened, and the part is pushed from the mold by automatic ejector pins. The mold is then closed and clamped, and the screw turns and retracts again to repeat the cycle of liquefying a new increment of resin. For small parts, cycles can be as rapid as several injections per minute.

Reaction injection molding
      One type of network-forming thermoset, polyurethane, is molded into parts such as automobile bumpers and inside panels through a process known as reaction injection molding, or RIM. The two liquid precursors of a polyurethane are a multifunctional isocyanate and a prepolymer, a low-molecular-weight polyether or polyester bearing a multiplicity of reactive end-groups such as hydroxyl, amine, or amide. In the presence of a catalyst such as a tin soap, the two reactants rapidly form a network joined mainly by urethane groups. The reaction takes place so rapidly that the two precursors have to be combined in a special mixing head and immediately introduced into the mold. However, once in the mold, the product requires very little pressure to fill and conform to the mold—especially since a small amount of gas is evolved in the injection process, expanding the polymer volume and reducing resistance to flow. The low molding pressures allow relatively lightweight and inexpensive molds to be used, even when large items such as bumper assemblies or refrigerator doors are formed.

 The popularity of thermoplastic containers for products previously marketed in glass is due in no small part to the development of blow molding. In this technique, illustrated in Figure 4—>, a thermoplastic hollow tube, the parison, is formed by injection molding or extrusion. In heated form, the tube is sealed at one end and then blown up like a balloon. The expansion is carried out in a split mold with a cold surface; as the thermoplastic encounters the surface, it cools and becomes dimensionally stable. The parison itself can be programmed as it is formed with varying wall thickness along its length, so that, when it is expanded in the mold, the final wall thickness will be controlled at corners and other critical locations. In the process of expansion both in diameter and length (stretch blow molding), the polymer is biaxially oriented, resulting in enhanced strength and, in the case of PET particularly, enhanced crystallinity.

      Blow molding has been employed to produce bottles of polyethylene, polypropylene, polystyrene, polycarbonate, PVC, and PET for domestic consumer products. It also has been used to produce fuel tanks for automobiles. In the case of a high-density-polyethylene tank, the blown article may be further treated with sulfur trioxide in order to improve the resistance to swelling or permeation by gasoline.

casting and dipping
      Not every forming process requires high pressures. If the material to be molded is already a stable liquid, simply pouring (casting) the liquid into a mold may suffice. Since the mold need not be massive, even the cyclical heating and cooling for a thermoplastic is efficiently done.

      One example of a cast thermoplastic is a suspension of finely divided, low-porosity PVC particles in a plasticizer such as DOP. This suspension forms a free-flowing liquid (a plastisol) that is stable for months. However, if the suspension (for instance, 60 parts PVC and 40 parts plasticizer) is heated to 180° C (356° F) for five minutes, the PVC and plasticizer will form a homogeneous gel that will not separate into its components when cooled back to room temperature. A very realistic insect or fishing worm can be cast from a plastisol using inexpensive molds and a cycle requiring only minutes. In addition, when a mold in the shape of a hand is dipped into a plastisol and then removed, subsequent heating will produce a glove that can be stripped from the mold after cooling.

      Thermoset materials can also be cast. For example, a mixture of polymer and multifunctional monomers with initiators can be poured into a heated mold. When polymerization is complete, the article can be removed from the mold. A transparent lens can be formed in this way using a diallyl diglycol carbonate monomer and a free-radical initiator.

      In order to make a hollow article, a split mold can be partially filled with a plastisol or a finely divided polymer powder. Rotation of the mold while heating converts the liquid or fuses the powder into a continuous film on the interior surface of the mold. When the mold is cooled and opened, the hollow part can be removed. Among the articles produced in this manner are many toys such as balls and dolls.

Thermoforming and cold molding
      When a sheet of thermoplastic is heated above its Tg or Tm, it may be capable of forming a free, flexible membrane as long as the molecular weight is high enough to support the stretching. In this heated state, the sheet can be pulled by vacuum into contact with the cold surface of a mold, where it cools to below Tg or Tm and becomes dimensionally stable in the shape of the mold. Cups for cold drinks are formed in this way from polystyrene or PET.

      Vacuum forming is only one variation of sheet thermoforming. The blow molding of bottles described above differs from thermoforming only in that a tube rather than a sheet is the starting form.

      Even without heating, some thermoplastics can be formed into new shapes by the application of sufficient pressure. This technique, called cold molding, has been used to make margarine cups and other refrigerated food containers from sheets of acrylonitrile-butadiene-styrene copolymer.

Foaming (foam)
      Foams (foamed plastic), also called expanded plastics, possess inherent features that make them suitable for certain applications. For instance, the thermal conductivity of a foam is lower than that of the solid polymer. Also, a foamed polymer is more rigid than the solid polymer for any given weight of the material. Finally, compressive stresses usually cause foams to collapse while absorbing much energy, an obvious advantage in protective packaging. Properties such as these can be tailored to fit various applications by the choice of polymer and by the manner of foam formation or fabrication. The largest markets for foamed plastics are in home insulation (polystyrene, polyurethane, phenol formaldehyde) and in packaging, including various disposable food and drink containers.

Foamed thermoplastics
      Polystyrene pellets can be impregnated with isopentane at room temperature and modest pressure. When the pellets are heated, they can be made to fuse together at the same time that the isopentane evaporates, foaming the polystyrene and cooling the assembly at the same time. Usually the pellets are prefoamed to some extent before being put into a mold to form a cup or some form of rigid packaging. The isopentane-impregnated pellets may also be heated under pressure and extruded, in which case a continuous sheet of foamed polystyrene is obtained that can be shaped into packaging, dishes, or egg cartons while it is still warm.

      Structural foams can also be produced by injecting nitrogen or some other gas into a molten thermoplastic such as polystyrene or polypropylene under pressure in an extruder. Foams produced in this manner are more dense than the ones described above, but they have excellent strength and rigidity, making them suitable for furniture and other architectural uses.

      One way of making foams of a variety of thermoplastics is to incorporate a material that will decompose to generate a gas when heated. To be an effective blowing agent, the material should decompose at about the molding temperature of the plastic, decompose over a narrow temperature range, evolve a large volume of gas, and, of course, be safe to use. One commercial agent is azodicarbonamide, usually compounded with some other ingredients in order to modify the decomposition temperature and to aid in dispersion of the agent in the resin. One mole (116 grams) of azodicarbonamide generates about 39,000 cubic centimetres of nitrogen and other gases at 200° C. Thus 1 gram added to 100 grams of polyethylene can result in foam with a volume of more than 800 cubic centimetres. Polymers that can be foamed with blowing agents include polyethylene, polypropylene, polystyrene, polyamides, and plasticized PVC.

Foamed thermosets
      The rapid reaction of isocyanates with hydroxyl-bearing prepolymers to make polyurethanes is mentioned above in Reaction injection molding. These materials also can be foamed by incorporating a volatile liquid, which evaporates under the heat of reaction and foams the reactive mixture to a high degree. The rigidity of the network depends on the components chosen, especially the prepolymer.

      Hydroxyl-terminated polyethers are often used to prepare flexible foams, which are used in furniture cushioning. Hydroxyl-terminated polyesters, on the other hand, are popular for making rigid foams such as those used in custom packaging of appliances. The good adhesion of polyurethanes to metallic surfaces has brought about some novel uses, such as filling and making rigid certain aircraft components (rudders and elevators, for example).

      Another rigid thermoset that can be foamed in place is based on phenol-formaldehyde resins. The final stage of network formation is brought about by addition of an acid catalyst in the presence of a volatile liquid.

Finishing
Joining
      Some plastics can be joined by welding, in the same manner as metals—PVC and polyethylene tanks and ductwork being prime examples. More commonly, surfaces are joined by being brought into contact with one another and heated (heat) by conduction or by dielectric heating. Heat sealing of bags made from tubes of blow-extruded polyolefins such as polyethylene and polypropylene usually requires contact with a hot sealing bar. PVC has a high enough dielectric loss that heat can be generated throughout the material by exposure to a high-frequency, high-voltage electric field.

Machining
      Rigid thermoplastics and thermosets can be machined by conventional processes such as drilling, sawing, turning on a lathe, sanding, and other operations. Glass-reinforced thermosets are machined into gears, pulleys, and other shapes, especially when the number of parts does not justify construction of a metal mold. Various forms can be stamped out (die-cut) from sheets of thermoplastics and thermosets. The cups made by vacuum forming, for instance, are cut out of the mother sheet using a sharp die. In the case of a thermoplastic such as polystyrene, the scrap sheet left over can be reground and remolded.

      Although colour may be added in the form of a pigment or dye throughout a plastic article, there are many applications where a surface coating is valuable for protective or decorative purposes. The automobile bumpers produced by reaction injection molding can be painted to match the rest of the body. It is important in applying coatings to plastics that the solvent used does not cause swelling of the underlying substrate. For this reason, latex dispersion paints have found favour, although surface treatment is necessary to provide good bonding with these materials.

Fibre reinforcement
      The term polymer-matrix composite is applied to a number of plastic-based materials in which several phases are present. It is often used to describe systems in which a continuous phase (the matrix) is polymeric and another phase (the reinforcement) has at least one long dimension. The major classes of composites include those made up of discrete layers (sandwich laminates) and those reinforced by fibrous mats, woven cloth, or long, continuous filaments of glass or other materials.

Sandwich laminates
      Plywood is a form of sandwich construction of natural wood fibres with plastics. The layers are easily distinguished and are both held together and impregnated with a thermosetting resin, usually urea formaldehyde. A decorative laminate can consist of a half-dozen layers of fibrous kraft paper (similar to paper used for grocery bags) together with a surface layer of paper with a printed design—the entire assembly being impregnated with a melamine-formaldehyde resin. For both plywood and the paper laminate, the cross-linking reaction is carried out with sheets of the material pressed and heated in large laminating presses.

      Fibrous reinforcement in popular usage is almost synonymous with fibreglass, although other fibrous materials (carbon, boron, metals, aramid polymers) are also used. Glass fibre is supplied as mats of randomly oriented microfibrils, as woven cloth, and as continuous or discontinuous filaments.

      Hand lay-up is a versatile method employed in the construction of large structures such as tanks, pools, and boat hulls. In hand lay-up mats of glass fibres are arranged over a mold and sprayed with a matrix-forming resin, such as a solution of unsaturated polyester (60 parts) in styrene monomer (40 parts) together with free-radical polymerization initiators. The mat can be supplied already impregnated with resin. Polymerization and network formation may require heating, although free-radical “redox” systems can initiate polymerization at room temperature. The molding may be compacted by covering the mold with a blanket and applying a vacuum between the blanket and the surface or, when the volume of production justifies it, by use of a matching metal mold.

      Continuous multifilament yarns consist of strands with several hundred filaments, each of which is 5 to 20 micrometres in diameter. These are incorporated into a plastic matrix through a process known as filament winding, in which resin-impregnated strands are wound around a form called a mandrel and then coated with the matrix resin. When the matrix resin is converted into a network, the strength in the hoop direction is very great (being essentially that of the glass fibres). Epoxies are most often used as matrix resins, because of their good adhesion to glass fibres, although water resistance may not be as good as with the unsaturated polyesters.

      A method for producing profiles (cross-sectional shapes) with continuous fibre reinforcement is pultrusion. As the name suggests, pultrusion resembles extrusion, except that the impregnated fibres are pulled through a die that defines the profile while being heated to form a dimensionally stable network.

Recycling and resource recovery
      In many municipalities, the favoured method of disposing of solid waste is in sanitary landfills, in which layers of refuse alternate with layers of soil. However, concerns over the wisdom of such land use has encouraged efforts to dispose of various materials by recycling them for re-use or to derive some positive benefits. Paper as well as glass and aluminum containers have been recycled to some degree for many years, and in more recent years plastic recycling has become common. There are several technical and economic problems in the recycling of plastics; they fall into two general categories: (1) identification, segregation (or sorting), and gathering into central stations and (2) the economics of recovering value.

Identification, segregation, gathering
 Since plastics used in packaging form a highly visible part (approximately 20 percent by volume but less than 10 percent by weight) of the waste stream, most recycling efforts have focused on containers. Almost all bottles, food trays, cups, and dishes made of the major commodity plastics now bear an identifying number enclosed in a triangle together with an abbreviation. These are shown in Table 2—>. In addition to such labeling, in many localities consumers are encouraged to return empty beverage containers to the place of purchase by being required to pay a deposit on each unit at the time of purchase. This system helps to solve two of the major problems associated with economical recycling, since the consumer seeking return of the deposit does the sorting and the stores gather the plastics into central locations. An added attraction of deposit laws is a notable decrease in roadside litter. However, while such measures have helped to raise dramatically the recycling rate of plastic bottles—especially those made of polyethylene terephthalate (PET) and high-density polyethylene (HDPE)—less than 5 percent of all plastic products are recycled after first use. (On the other hand, most plastics are used in long-term applications such as construction, appliances, and home furnishings, for which efficient recycling is difficult.)

Economic recovery of value
 The plastics listed in Table 2—> are all thermoplastics, and, in general, thermoplastic materials can be recycled more readily than thermosets. Still, there are inherent limitations on the recycling of even these materials. First, a recyclable plastic may be contaminated by nonplastics or by different polymers making up the original product. Even within a single polymer type, there are differences in molecular weight. For instance, a supplier of polystyrene may produce a material of high molecular weight for sheet-formed food trays, since that forming process favours a high melt viscosity and elasticity. At the same time, the supplier may offer a low-molecular-weight polystyrene for the injection molding of disposable dinnerware, since injection molding works best with a melt of low viscosity and very little elasticity. If the polymers from both types of product are mixed in a recycling operation, the mixed material will not be very suitable for either of the original applications.

      Another complication to the recycling of plastics is the mixing together of pigments or dyes of different colours, and yet another is the problem of quality control. Almost all plastics change either slightly or greatly as a result of initial fabrication and use. Some, for instance, undergo changes in molecular weight due to cross-linking or chain scission (breaking of the chemical bonds that hold a polymer chain together). Others undergo oxidation, another common reaction that can also change the properties of a plastic.

      For all the foregoing reasons, recycled plastics will almost always have certain disadvantages in comparison to unrecycled plastics. Most thermoplastics are therefore recycled into somewhat less-demanding applications. HDPE from thin-walled grocery bags, for example, may be converted into thick-walled flowerpots; PVC recovered from bottles may be used in traffic cones; and PET recovered from beverage bottles may be washed, dried, and melt-spun into fibrous filling for pillows and clothing. Waste plastics that cannot be separated by polymer type can be made into plastic “lumber,” extruded slabs that are suitable for applications such as industrial flooring and park benches. Owing to its heterogeneous composition, plastic lumber is inherently weaker than the original polymers. Other recycling processes that make use of mixed plastics are pyrolysis, which converts the solids into a petroleum-like substance, and direct incineration, which can provide energy for power plants or industrial furnaces.

      Despite the difficulties in making the recycling of plastics economically attractive on a large scale, many successful processes have been developed for more narrowly defined “niche” applications. Automotive suppliers have found it feasible to recycle polyurethanes from the insides of panels and dashboards if proper attention is paid to the design of the original materials. The polycarbonates widely used in compact discs have been recovered and effectively reused. The polypropylene casings of automobile batteries can be recovered economically during lead-recycling operations and then remolded for the same application. Some manufacturers depolymerize PET by hydrolysis or methanolysis; the resulting materials can be purified by distillation and then repolymerized.

      In most plastic recycling operations, the first step after sorting is to chop and grind the plastic into chips, which are easier to clean and handle in subsequent steps. The chips commonly are first washed in order to remove nonplastic items such as labels, caps, and adhesives. If the material comes from a narrowly defined source, it may be possible to dry the washed chips and immediately extrude them into molding pellets or even to extrude them directly into fibres. For “mixed-waste” polymers, automatic separation processes based on differences in density or solubility have been used to some extent.

Degradable plastics
      None of the commodity plastics degrades rapidly in the environment. Nevertheless, some scientists and environmentalists have seen biodegradable and photodegradable plastics as a solution to the problem of litter. Such materials have been developed, but they have not been successful on a large scale primarily because of high production costs and problems of stability during their processing and use.

      On the other hand, the plastic rings that hold six-packs of soft-drink and beer cans together represent an application where photodegradation has been used effectively. A copolymer of ethylene with some carbon monoxide contains ketone groups that absorb sufficient energy from sunlight to cause extensive scissioning of the polymer chain. The photodegradable plastic, very similar in appearance and properties to low-density polyethylene (LDPE), decomposes to a powder within a few months of exposure in sunny climates.

Additional Reading
Jacqueline I. Kroschwitz (ed.), Encyclopedia of Polymer Science and Engineering, 2nd ed., 17 vol. (1985–90), is the most comprehensive source of information on polymer science and includes articles on the major topics treated in this article; it is also available in a condensed, 1-vol. edition, Concise Encyclopedia of Polymer Science and Engineering (1990). Two additional reference works are Geoffrey Allen and John C. Bevington (eds.), Comprehensive Polymer Science: The Synthesis, Characterization, Reactions & Applications of Polymers, 7 vol. (1989); and Joseph C. Salamone (ed.), Polymeric Materials Encyclopedia, 12 vol. (1996). Books on polymer science for the nonscientific reader are Hans-Georg Elias, Mega Molecules (1987; originally published in German, 1985); and Raymond B. Seymour and Charles E. Carraher, Giant Molecules: Essential Materials for Everyday Living and Problem Solving (1990).Modern Plastics Encyclopedia (annual) contains individual articles on plastics and fabrication processes written primarily for nonspecialists. Molding processes are described in Michael L. Berins (ed.), SPI Plastics Engineering Handbook of the Society of the Plastics Industry, Inc., 5th ed. (1991); and Charles A. Harper (ed.), Handbook of Plastics, Elastomers, and Composites, 3rd ed. (1996). Ferdinand Rodriguez, Principles of Polymer Systems, 4th ed. (1996), includes coverage of the fabrication of plastics and has detailed bibliographies.Ferdinand Rodriguez

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?
Synonyms:

Look at other dictionaries:

  • Plastic — is the general common term for a wide range of synthetic or semisynthetic organic solid materials suitable for the manufacture of industrial products. Plastics are typically polymers of high molecular weight, and may contain other substances to… …   Wikipedia

  • PLASTIC — Explosif pâteux à base d’hexogène ou de pentrite, le plastic, ou explosif plastique, présente une consistance analogue à celle du mastic de vitrier, mais il ne durcit pas. Il est caractérisé par une brisance élevée et une bonne puissance. Il ne… …   Encyclopédie Universelle

  • Plastic — Plas tic (pl[a^]s t[i^]k), a. [L. plasticus, Gr. ?, fr. ? to form, mold: cf. F. plastique.] 1. Having the power to give form or fashion to a mass of matter; as, the plastic hand of the Creator. Prior. [1913 Webster] See plastic Nature working to… …   The Collaborative International Dictionary of English

  • plastic — plastic, pliable, pliant, ductile, malleable, adaptable are applied to things and to persons regarded as material susceptible of being modified in form or nature. Something plastic has the quality (as of wax, clay, or plaster) of being soft… …   New Dictionary of Synonyms

  • plastic — [plas′tik] adj. [L plasticus < Gr plastikos < plassein, to form, prob. < IE base * plā , flat, to smooth out > PLAIN1] 1. molding or shaping matter; formative 2. a) capable of being molded or shaped b) made of a plastic …   English World dictionary

  • plastic — plas‧tic [ˈplæstɪk] noun [uncountable] informal a credit card, or credit cards in general: • I m going to have to pay for this with plastic. * * * plastic UK US /ˈplæstɪk/ noun [U] ► INFORMAL MONEY …   Financial and business terms

  • plastic — (pl[a^]s t[i^]k), n. A substance composed predominantly of a synthetic organic high polymer capable of being cast or molded; many varieties of plastic are used to produce articles of commerce (after 1900). [MW10 gives origin of word as 1905]… …   The Collaborative International Dictionary of English

  • plastic — [adj1] flexible, soft; made of manufactured, treated compounds bending, ductile, elastic, fictile, formable, moldable, molded, pliable, pliant, resilient, shapeable, supple, workable; concept 604 Ant. hard, inflexible, stiff plastic [adj2] easily …   New thesaurus

  • plastic — ► NOUN 1) a synthetic material made from organic polymers, that can be moulded into shape while soft and then set into a rigid or slightly elastic form. 2) informal credit cards or other plastic cards that can be used as money. ► ADJECTIVE 1)… …   English terms dictionary

  • -plastic — plas tic ( pl[a^]s t[i^]k). [Gr. ? fit for molding, plastic, fr. ? to mold, to form.] A combining form signifying developing, forming, growing; as, heteroplastic, monoplastic, polyplastic. [1913 Webster] …   The Collaborative International Dictionary of English

  • -plastic — [plas′tik] [< Gr plastikos: see PLASTIC] combining form forming adjectives 1. forming, developing [homoplastic] 2. of or relating to (a given noun ending in PLASM, PLAST, or PLASTY) [rhinoplastic] …   English World dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”