- phase rule
-
Physical Chem.a law that the number of degrees of freedom in a system in equilibrium is equal to two plus the number of components less the number of phases. Thus, a system of ice, melted ice, and water vapor, being one component and three phases, has no degrees of freedom. Cf. variance (def. 4).[1895-1900]
* * *
▪ physicslaw relating variables of a system in thermodynamic equilibrium, deduced by the American physicist J. Willard Gibbs (Gibbs, J Willard) in his papers on thermodynamics (1875–78). Systems in thermodynamic equilibrium are generally considered to be isolated from their environment in some kind of closed container, but many geological systems can be considered to obey the phase rule. The variables are: the number of phases P (forms of matter; i.e., solid, liquid, and gas not necessarily of a single chemical component), the number of chemical components C (pure compounds or elements), and the number of degrees of freedom F of intensive variables, such as temperature, pressure, and percentage composition. The phase rule states that F = C - P + 2. Thus, for a one-component system with one phase, the number of degrees of freedom is two, and any temperature and pressure, within limits, can be attained. With one component and two phases—liquid and vapour, for example—only one degree of freedom exists, and there is one pressure for each temperature. For one component and three phases (e.g., ice floating in water with water vapour above it, in a closed container), there is no degree of freedom, and temperature and pressure are both fixed at what is called the triple point (see phase diagram).In multicomponent systems the number of components to be counted may be fewer than the total number if some are in chemical equilibrium with one another. For example, a monomer (simple molecule) in equilibrium with its dimer (two molecules chemically bonded) would count as a single component.* * *
Universalium. 2010.