nowhere-dense

nowhere-dense
/noh"hwair dens", -wair-/, adj. Math.
(of a set in a topological space) having a closure that contains no open set with any points in it; nondense.

* * *


Universalium. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Nowhere dense set — A subset A of a topological space X is nowhere dense in X if and only if the interior of the closure of A is empty. The order of operations is important. For example, the set of rational numbers, as a subset of R has the property that the closure …   Wikipedia

  • nowhere-dense — /noh hwair dens , wair /, adj. Math. (of a set in a topological space) having a closure that contains no open set with any points in it; nondense …   Useful english dictionary

  • Dense set — In topology and related areas of mathematics, a subset A of a topological space X is called dense (in X) if any point x in X belongs to A or is a limit point of A.[1] Informally, for every point in X, the point is either in A or arbitrarily close …   Wikipedia

  • Dense graph — In mathematics, a dense graph is a graph in which the number of edges is close to the maximal number of edges. The opposite, a graph with only a few edges, is a sparse graph. The distinction between sparse and dense graphs is rather vague, and… …   Wikipedia

  • Dense nulle-part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… …   Wikipédia en Français

  • Dense nulle part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… …   Wikipédia en Français

  • Dense-in-itself — In mathematics, a subset A of a topological space is said to be dense in itself if A contains no isolated points. Every dense in itself closed set is perfect. Conversely, every perfect set is dense in itself. A simple example of a set which is… …   Wikipedia

  • Nowhere continuous function — In mathematics, a nowhere continuous function, also called an everywhere discontinuous function, is a function that is not continuous at any point of its domain. If f is a function from real numbers to real numbers, then f(x) is nowhere… …   Wikipedia

  • Ensemble Nulle Part Dense — En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque aucun point de X ne peut… …   Wikipédia en Français

  • Ensemble dense nulle-part — Ensemble nulle part dense En topologie, un ensemble est nulle part dense ou rare[1] s il satisfait aux propriétés inverses du concept de densité. Intuitivement, un sous ensemble A d un espace topologique X est nulle part dense dans X si presque… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”