- noncommutative
-
adj.
* * *
Universalium. 2010.
* * *
Universalium. 2010.
Noncommutative algebraic geometry — is a branch of mathematics, and more specifically a direction in noncommutative geometry that studies the geometric properties of formal duals of non commutative algebraic objects such as rings as well as geometric objects derived from them (e.g … Wikipedia
Noncommutative logic — is an extension of linear logic which combines the commutative connectives of linear logic with the noncommutative multiplicative connectives of the Lambek calculus (see External links below). Its sequent calculus relies on the structure of order … Wikipedia
Noncommutative topology — in mathematics is a term applied to the strictly C* algebraic part of the noncommutative geometry program. The program has its origins in the Gel fand duality between the topology of locally compact spaces and the algebraic structure of… … Wikipedia
Noncommutative measure and integration — refers to the theory of weights, states, and traces on von Neumann algebras (Takesaki 1979 v. 2 p. 141). References I. E. Segal. A noncommutative extension of abstract integration. Ann. of Math. (2), 57:401–457, 1953. MR # 14:991f,… … Wikipedia
Noncommutative geometry — Not to be confused with Anabelian geometry. Noncommutative geometry (NCG) is a branch of mathematics concerned with geometric approach to noncommutative algebras, and with construction of spaces which are locally presented by noncommutative… … Wikipedia
Noncommutative quantum field theory — In mathematical physics, noncommutative quantum field theory (or quantum field theory on noncommutative spacetime) is an application of noncommutative mathematics to the spacetime of quantum field theory that is an outgrowth of noncommutative… … Wikipedia
Noncommutative ring — In mathematics, more specifically modern algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, if R is a noncommutative ring, there exists a and b in R with a·b ≠ b·a, and conversely.… … Wikipedia
Noncommutative standard model — In theoretical particle physics, the non commutative Standard Model, mainly due to the French mathematician Alain Connes, uses his noncommutative geometry to devise an extension of the Standard Model to include a modified form of general… … Wikipedia
Noncommutative residue — In mathematics, noncommutative residue, defined independently by M. Wodzicki (1984) and Guillemin (1985), is a certain trace on the algebra of pseudodifferential operators on a compact differentiable manifold that is expressed via a local density … Wikipedia
Noncommutative harmonic analysis — In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups which are not commutative. Since for locally compact abelian groups have a well understood theory, Pontryagin… … Wikipedia
Noncommutative unique factorization domain — In mathematics, the noncommutative unique factorization domain is the noncommutative counterpart of the commutative or classical unique factorization domain (UFD). Example The ring of integral quaternions. If the coefficients a0, a1, a2, a3 are… … Wikipedia