moss animal

moss animal

* * *

also called  bryozoan,  

      any member of the phylum Bryozoa (also called Polyzoa or Ectoprocta), in which there are about 5,000 extant species. Another 15,000 species are known only from fossils. As with brachiopods and phoronids, bryozoans possess a peculiar ring of ciliated tentacles, called a lophophore, for collecting food particles suspended in the water. The bryozoans are a widely distributed, aquatic, invertebrate group of animals whose members form colonies (colony) composed of numerous connected units called zooids (hence the term Polyzoa, which means “many animals”). Individual zooids are usually no more than one millimetre (0.04 inch) long, although colonies of some species can exceed 0.5 metre (about 20 inches) in diameter. Until the mid-18th century, bryozoans, like corals, were regarded as plants; hence the name, which means “moss animals.” Seventy-five years later, the bryozoans were distinguished from the cnidarians, and the characteristic structure of the zooid was first described.

      Bryozoans are separated into three classes: Phylactolaemata (freshwater dwelling); Stenolaemata (marine); and Gymnolaemata (mostly marine). The order Cheilostomata (class Gymnolaemata), containing 600 genera, is the most successful bryozoan group.

General features

Distribution and abundance
      Bryozoan colonies are found in both fresh and salt waters, most commonly as growths or crusts on other objects. Freshwater bryozoans live among vegetation in clear, quiet, or slowly flowing water. Marine species range from the shore to the ocean depths but are most plentiful in the shallow waters of the continental shelf. They cover seaweeds, form crusts on stones and shells, hang from boulders, or rise from the seabed. Bryozoans readily colonize submerged surfaces, including the hulls of ships and the insides of water pipes. A few types of bryozoans form nonattached populations on sandy seabeds.

      The zooid walls, which constitute the most permanent portion of the colony, generally are calcareous (i.e., impregnated with calcium carbonate), giving bryozoans a fossil record that dates from the Ordovician onward (i.e., from about 500 million years ago).

Size range and diversity of structure
      Although the component zooids rarely exceed one millimetre in length, bryozoan colonies—formed of numerous asexually budded zooids—vary greatly in size. In the gymnolaemate genus Monobryozoon, which lives between marine sand particles, a colony consists of little more than a single feeding zooid less than one millimetre in height. Colonies of the European Pentapora, however, can reach one metre (3.3 feet) or more in circumference; a warm-water gymnolaemate genus, Zoobotryon, which hangs from harbour pilings, and the freshwater phylactolaemate Pectinatella each produce masses that may be one-half metre across. Colonies that form crusts generally cover only a few square centimetres; erect colonies may rise only two to five centimetres (0.8–2 inches).

      The texture of the colonies is variable. Some colonies, especially those in fresh water and on seashores, are gelatinous or membranous; others are tufted, with flat fronds (leaflike structures) or whorls of slender branches, whose horny texture results from light deposits of lime in zooid walls. Still other colonies are hard and have calcified skeletons. Such colonies may form rough-surfaced patches or may rise in slender branching twigs (such as those that form a network in the beautiful lace corals; e.g., Sertella).

      The colonies, diverse and complex in structure, are composed of individual modules, or zooids, and each zooid effectively is a complete animal. In all bryozoan colonies, however, the zooids remain interconnected and may exchange nutrients and other substances through interconnecting cables or minute pores in their body walls. A bryozoan colony usually has many zooids, which may be of one type or of types that differ both functionally and structurally. All zooids in a colony arise by asexual budding from the first zooid to form. Zooids capable of feeding have a ring of slender tentacles at one end of the body. Cilia (hairlike projections) that propel tiny particles of food toward the zooid mouth are found on this ring, and the whole feeding organ is called a lophophore. The mouth opens into a digestive tract that is divided into several regions and terminates at an anus, which is outside (but near) the tentacles (hence the name Ectoprocta, meaning “outside anus”). If zooids are disturbed, they withdraw their tentacles inside the body cavity. Only if the zooids have transparent walls, such as in the gymnolaemates Bowerbankia and Membranipora, is the digestive tract visible. The internal living parts of each zooid—i.e., the nervous and muscular systems, the tentacles, and the digestive tract—are called the polypide.

Natural history

Reproduction and life cycle
      Many animals, bryozoans included, have a life cycle that incorporates phases of asexual and sexual reproduction. Asexual reproduction, in which no gametes (sex cells) participate, produces genetically identical progeny (clones), which separate in larger animals (e.g., sea anemones). In bryozoans, the progeny, called zooids, are produced by an asexual process called budding and almost invariably remain in intimate contact to form a colony. As the colony continues to enlarge by budding, the zooids become sexually mature, producing eggs and spermatozoa. Sexual reproduction, by the production and subsequent fusion of gametes, generates the genetic variability necessary for a species to adapt to changing conditions. Fertilized eggs develop into swimming larvae.

      Some bryozoans also propagate colonies asexually. The cheilostome Discoporella has small, nonattached, saucerlike colonies. Groups of zooids at the colony rim detach at special fracture zones and grow into new colonies. The statoblasts (dormant buds) of freshwater bryozoans are another asexual means of reproduction. Asexual reproduction, whether leading to a clone, a colony, or a clone of colonies, is a means of perpetuating and spreading a successful genetic constitution (genotype).

      The colony formed by asexual budding originates from either a primary zooid (the ancestrula) or a statoblast. The ancestrula is formed by the metamorphosis of a sexually produced larva. New zooids bud from the ancestrula to produce colonies of definite shape and growth habit. In the phylactolaemates, the primitive zooids are cylindrical in form, and the budding pattern results in a branched colony. In more highly evolved phylactolaemates, colonies are compact, and discrete zooids can be recognized only with difficulty. New polypides, which originate by ingrowth of the superficial cell layer, or epithelium, remain suspended within a common colonial coelom, or body cavity.

      Among living members of the primitive (and mainly fossil) marine stenolaemates, the long and slender zooids have calcified tubular skeletons. A larva metamorphoses into a hemispherical primary disk (or proancestrula). A cylindrical extension grows from the proancestrula, and the matrix of the colony then is built up by repeated divisions of the zooidal walls. Internal walls of the colony are called septa. The growth and budding zones of the colony are found at its outer edges. Cells from the surface epithelium push inward to produce the polypide, and the septa create a chamber around it. The walled portion of a zooid is called the cystid.

      In the gymnolaemates, in which the zooids frequently are flattened, budding occurs as transverse septa form and cut off parts of the primary zooid (or any other parent zooid). As each bud enlarges to become a zooid, a polypide forms inside. In the order Cheilostomata, budding usually produces rows of identical zooids that radiate from the primary zooid. The rows divide periodically to keep pace with the increasing circumference of the colony. Successive zooids in a row are separated by transverse septa, but adjoining rows are separated by double walls. Interzooidal pores are present both in the walls and in the septa.

      Mature gymnolaemate and phylactolaemate zooids are generally hermaphroditic (i.e., both male and female reproductive organs in the same zooid); small gonads are attached in clusters to the membrane that lines the body wall or the polypide. In a few species the individual zooids are of one sex only. In these circumstances, female zooids are usually larger (e.g., the cheilostome Reptadeonella), male zooids may be simpler (e.g., the cheilostome Hippoporidra), or female and male reproductive zooids each may be distinguishable from ordinary feeding zooids (e.g., the cheilostome Celleporella). Among living stenolaemates most zooids contain only testes (male gonads). The few female zooids enlarge to form spacious brood chambers, which are called gonozooids. During development, a young embryo squeezes off groups of cells that form secondary embryos; these in turn may form tertiary embryos. In this way, many larvae can develop in a single brood chamber.

      Among the phylactolaemates, the fertilized egg develops in an internal embryo sac; a larva, which already contains the first polypide, is formed there, then liberated. Phylactolaemates also produce statoblasts, which develop on the funiculus, a cord of tissue that links the stomach to the lining of the body wall. As it grows, each statoblast is surrounded by a hard protective case that may also include an air-filled float and slender, hooked spines. Statoblasts usually develop in late summer and are liberated as the colony disintegrates with the approach of winter. Statoblasts survive dry and freezing conditions and can initiate a new colony when favourable climatic conditions recur.

      In gymnolaemates one oocyte at a time usually enlarges and bursts from the ovary into the coelom. The oocyte then is fertilized and transferred to a brood chamber. This may be an undifferentiated part of a zooid; usually among the cheilostomes, however, each reproducing zooid develops a special globular or hooded ooecium in which the embryo grows. In most cheilostomes the egg at transfer has sufficient yolk to nourish its developing embryo, but in the cheilostomes Bugula and Celleporella the egg, which is small at transfer, establishes a pseudoplacenta with tissues of the mother zooid and receives nourishment as the embryo develops. The ciliated larvae, spherical and often about 1/4 millimetre in diameter, are liberated when fully developed and may swim first toward the light and thus away from the parent colony; later, however, the larvae avoid light as they seek a place in which to attach and metamorphose. Metamorphosis of larvae to adults occurs within a few hours after larvae are liberated.

      In certain genera (e.g., Membranipora) of the class Gymnolaemata, each zooid produces many tiny eggs, which are fertilized by sperm from another zooid as they are shed directly into the sea. The fertilized eggs develop into triangular, bivalved larvae, known as cyphonautes, which for several weeks live among, and feed on, plankton. Larvae from brood chambers and cyphonautes metamorphose in a similar way; i.e., both locate a suitable surface and explore it with sensory cilia. Attachment is achieved by flattening a sticky holdfast, which pulls the larva down on top of it. As metamorphosis proceeds, larval organization degenerates, and the first polypide develops inside a primary zooid.

Freshwater bryozoans
      Freshwater bryozoans live mainly on leaves, stems, and tree roots in shallow water. Before drinking water was filtered, they regularly polluted water supply pipes. Though not uncommon, freshwater bryozoans are inconspicuous in pools, lakes, or gently flowing rivers, especially in slightly alkaline water.

Marine bryozoans
      The most familiar marine bryozoans are those that inhabit shores, though they occur in greater numbers below tidemarks. Dredge hauls of stones and shells yield colonies in abundance. Colonies also occur on the ocean bed, even at great depths, but the frequently muddy bottom of the oceanic abyss is an unfavourable habitat. A few species tolerate hypersaline or brackish waters. The predominantly marine Gymnolaemata has a few freshwater representatives; e.g., Paludicella.

      Shallow, sheltered channels that have currents but are protected from severe waves are typical bryozoan habitats. Open coastlines support fewer species, but noncalcareous species occur abundantly on intertidal algae in temperate waters. A familiar genus is the lacy gymnolaemate Membranipora, which is found throughout the world and is well adapted to living on kelp weeds at, and just below, the low-water mark. Although the zooid walls of Membranipora colonies are calcified, they contain flexible joints, which allow the colony to bend as the alga sways in the waves. Membranipora, which may cover large areas with a million or more zooids, always grows predominantly toward the youngest part of an algal frond. Overhangs, which form when soft rock erodes along a shoreline, as well as the shaded pilings of jetties and piers are other favoured bryozoan habitats. Since they do not require light and can grow in dark places, bryozoans can avoid competition from algae that could smother them. Sea slugs and sea spiders appear to be the principal predators of bryozoans.

Food and feeding
      Bryozoans feed on minute planktonic particles that are captured by the ciliated lophophore tentacles (from eight to about 30), which, in marine species, spread as a funnel with the mouth at its vertex. The beating of long lateral cilia draws water into the top of the funnel and propels it out between the tentacles. Particles are projected toward the mouth, and those that would leave the funnel between the tentacles appear to be flicked back into it by a reversal of the ciliary beat. Shorter cilia on the inner face of the tentacles carry food particles toward the mouth without the involvement of mucus; from there they are sucked into the pharynx. Diatom shell valves are separated or broken in the gizzard, when present. Digestion and absorption occur in the stomach, and indigestible remains are compacted by rotation and expelled as fecal pellets. Freshwater bryozoans have more tentacles, which are disposed in a crescent shape, the ends of which project behind the mouth.

Form and function

      Although zooid appearance and structure vary considerably from class to class, all conform to a basic plan. Zooids are rarely longer than one millimetre; the most primitive are cylindrical, suggesting that the bryozoan ancestor was probably wormlike. The skeleton is external, ranging from a thin, cuticular cover to a thick, calcified layer. The tentacles, collectively termed the lophophore, are raised above the zooid on a slender extension of the body wall (the tentacle sheath, or introvert). When not spread for feeding, the tentacles are withdrawn into the coelom in a movement that involves the inrolling of the tentacle sheath as the mouth and tentacles are pulled down within by the action of paired retractor muscles. Eversion of the tentacle sheath and tentacles is effected by raising the hydrostatic pressure of the body fluid. Phylactolaemates have a muscular and contractile body wall for this purpose; in gymnolaemates the wall is nonmuscular but in whole or in part flexible, so that it can be pulled inward by the body musculature associated with it (parietal muscles). In most extant bryozoans the zooids are not cylindrical but flat, with rigid side walls. The upward-facing or frontal wall either remains flexible or has concealed below its calcified surface a membranous cavity, the ascus (sac), which can be inflated with seawater, thereby compressing the body fluid. At the free end of a cylindrical zooid or near the distal end of a flat zooid is an opening known as the orifice, through which the tentacle sheath and tentacles emerge; in cheilostome gymnolaemates the orifice has a closable lid, the operculum. Stenolaemate zooids are different, and the walls have the form of a slender calcareous tube, no part of which can be inflected to evert the tentacles; instead, body fluid is forced from one part of the zooid to another by muscles.

      The digestive canal forms a deep loop; the pharynx descends to the stomach, the anterior part of which forms a gizzard in some genera, such as the gymnolaemate Bowerbankia; the rectum rises from the stomach, and the anus is situated just outside the lophophore. Respiratory, circulatory, and excretory systems are absent in bryozoans. The reproductive organs (ovary, testes) are sited on the lining of the body wall or on the funiculus, a cord of tissue that links the stomach to the lining of the body wall and distributes nutrients throughout the colony. The polypide degenerates periodically during the lifetime of a zooid, and a compact mass, called a brown body, frequently remains in its place. A new polypide soon differentiates from living cells of the cystid.

      Zooid polymorphism exists among the cheilostome colonies, and the operculum seems to have been significant in the evolution of the specialized zooids of this order. The avicularium type of zooid has a small body and a rudimentary polypide; the operculum, however, is proportionally larger, has strong adductor (closing) muscles, and has become, in effect, a jaw. Avicularia are found among normal zooids but usually are smaller and attached to normal zooids, as in the gymnolaemate Schizoporella. In the gymnolaemate Bugula the avicularia are movable on short stalks and closely resemble miniature birds' heads—hence the name avicularium. Another specialized form of zooid is the vibraculum, in which the operculum has become a whiplike seta (i.e., hairlike projection). The functions of avicularia and vibracula are not clearly known, but both types of zooids may help to keep the colony free from particles and epizoites (i.e., organisms that attach to the surface of the colony but do not parasitize it).

      In addition, some bryozoan species exhibit a phenomenon called phenotypic plasticity. These species have the ability to alter the form of newly generated zooids in response to pressures of increased predation or competition. Such environmental cues may cause zooids to express different genetic characters, such as armoured or spined outer coverings, than they otherwise would.

      Despite their sometimes ill-defined shape, colonies, at least in extant bryozoans, are not just aggregations of zooids but whole organisms having an integrated physiology and behaviour that appear to be coordinated to some extent. The agency for integration is the system of interzooidal pores and the cells or tissues that traverse them. Most conspicuous are those of the funiculus, which in gymnolaemates becomes a colonial network capable of distributing nutrients to nonfeeding areas, such as the growing edge. The nervous system of bryozoans consists of a small ganglion (brain) positioned between the mouth and the anus that supplies nerves to the zooidal organs. In some bryozoans there is also a colonial network that unites the zooids through the interzooidal pores. A stimulus that causes the lophophore to withdraw in a zooid of the gymnolaemate Membranipora almost instantaneously evokes the same response nearby, and nerve impulses can at that time be recorded. Nevertheless, to a large extent the colony is not individualistic; for example, it usually has no definite shape, can grow in any direction, and can be partially destroyed without harm to the rest. It may live a few months or a couple of years, or it may be theoretically immortal, its life of continual budding terminated only by some catastrophe.

Evolution and paleontology
      The Bryozoa have a long history. From the Lower Ordovician (488 million to 472 million years ago) onward, most limestone formations, especially those with shale alternations, are rich in bryozoan fossils. The skeletons of calcified bryozoans are easily preserved. Stenolaemates are abundant fossils; after their appearance in the Upper Jurassic (about 160 million to 146 million years ago), cheilostome fossils also are abundant. The soft-bodied phylactolaemates, on the other hand, have left no fossil record, and fossilized ctenostomes are rare but long antedate the cheilostomes.

      The most ancient bryozoans are stenolaemates from the Lower Ordovician of the United States and Russia (Arenig series, about 471 million years old); both cystoporate and trepostome stenolaemates have been found. The ceramoporoids, a group belonging to the order Cystoporata, flourished during the Ordovician and evidently were the progenitors of a more advanced group, the fistuliporoids, which were successful until the end of the Permian (299 million to 251 million years ago).

      Dominant among the early Paleozoic (542 million to 251 million years ago) stenolaemates, however, was the order Trepostomata, which evolved rapidly during the Ordovician and attained its peak during the upper part of the same system. The long, slender zooids of trepostomes grew together to form large, solid colonies. As a zooid grew longer and longer, diaphragms (or transverse partitions) were deposited. The trepostomes declined in importance after the Ordovician, perhaps as a result of competition from the cryptostomes, and were extinct by the close of the Permian.

      Cryptostomes (Cryptostomata) evolved rapidly during the Ordovician. They were similar to the trepostomes but evolved freely erect, leaflike, branching or lacy colonies in the ptilodictyoids, or branching in rhabdomesoids, and were the dominant bryozoans from the start of the Devonian until the Permian (416 million to 299 million years ago). For reasons not yet clear, the cryptostomes dwindled and became extinct soon after the end of the Paleozoic Era (251 million years ago).

      The Cyclostomata arose in the Paleozoic, flourished during the Jurassic (about 200 million to 146 million years ago) and Lower Cretaceous, and still survive.

      The ctenostomes (class Gymnolaemata) have left a sparse fossil record. During the Late Jurassic Period they apparently gave rise to the complex and successful cheilostomes. The early cheilostomes had encrusting flat zooids similar to some of their contemporary ctenostomes, but with side walls that were calcified. This type of organization, termed anascan (meaning without an ascus), permitted inflexion of the front wall to evert the lophophore but seemed to offer little protection. The Ascophora (ascus bearers) evolved in the Late Cretaceous by calcifying the membranous front but preserving its hydrostatic function by a flexible infolding (ascus) below the wall. The parietal muscles attach to the ascus and pull its lower surface into the coelom to evert the lophophore, while the ascus itself fills with seawater.


Distinguishing taxonomic features
      Although both colony type and zooid morphology are used to classify bryozoans, zooidal characters are more reliable. The cylindrical zooids are of rather uniform appearance in the stenolaemates, making classification difficult. Wall structure and the morphology of the embryo chambers are important taxonomic characters. In cheilostomes the skeletal features of the zooids, particularly the presence, extent, and structure of the frontal wall—together with shape of the orifice, type of ooecia, and zooid polymorphism—provide the most important distinguishing taxonomic criteria. Among ctenostomes and phylactolaemates, whose zooids lack skeletal features, colony form is more important. Statoblasts are also of taxonomic value. Internal characters have been used less, but the presence or absence of a gizzard, number of tentacles, and colour of developing embryos are taxonomically useful.

Annotated classification
Phylum Bryozoa
 Sedentary, aquatic invertebrates; form colonies of zooids by budding; each zooid with circular or crescentic lophophore surrounding a mouth from which slender, ciliated tentacles arise; anterior part of body forms an introvert within which the lophophore can be withdrawn; alimentary canal deeply looped; anus opens near mouth but outside lophophore; excretory organs and a blood vascular system absent; each zooid secretes a rigid or gelatinous wall to support colony; about 5,000 extant species.
      Class Phylactolaemata
 Zooids basically cylindrical, with a crescentic lophophore and an epistome (hollow flap overhanging mouth); body wall non-calcareous, muscular, used for everting the lophophore; coelom continuous between zooids; new zooids arise by replication of polypides; special dormant buds (statoblasts) are produced; zooids monomorphic; exclusively freshwater; cosmopolitan; apparently primitive, but with no certain fossil record; about 12 genera, 50 species.

      Class Stenolaemata (stenolaemate)
 Fossil except for some Cyclostomata; zooids cylindrical; body wall calcified, without muscle fibres; not used for everting the lophophore; zooids separated by septa; new zooids produced by division of septa; limited polymorphism; marine; Ordovician to present; about 20 families, 900 species.

      Order Cyclostomata
 Orifice of zooid circular; lophophore circular; no epistome; zooids interconnected by open pores; sexual reproduction involves polyembryony, usually in special reproductive zooids; all seas; Ordovician to present; about 250 genera.

      Order Cystoporata
 Zooid skeletons long and tubular, interconnected by pores and containing diaphragms (transverse partitions); cystopores (not pores but supporting structures between the zooid skeletons) present; Ordovician to Permian; about 80 genera.

      Order Trepostomata
 Colonies generally massive, composed of long tubular zooid skeletons with lamellate calcification; without interzooidal pores; orifices polygonal; sometimes with numerous diaphragms, zooid walls thin proximally, thicker distally; Ordovician to Permian; about 100 genera.

      Order Cryptostomata
 Colonies mostly with foliaceous or reticulate fronds or with branching stems; zooid skeletons tubular, shorter than in trepostomes; without pores; with diaphragms; proximal portions thin walled, distal portions funnellike and separated by extensive calcification; Ordovician to Triassic; about 130 genera.

      Class Gymnolaemata
 Zooids cylindrical or squat, with a circular lophophore; no epistome; body wall sometimes calcified; nonmuscular; eversion of lophophore dependent on deformation of body wall by extrinsic muscles; zooids separated by septa or duplex walls; pores in walls plugged with tissue; new zooids produced behind growing points by formation of transverse septa; zooids polymorphic; mainly marine; all seas; Jurassic to present, but presumed to have been established at least by the Ordovician; about 3,000 species.

      Order Ctenostomata
 Zooids cylindrical to flat; walls not calcified; orifice terminal or nearly so, often closed by a pleated collar; no ooecia or avicularia; Jurassic to present, but presumed older; about 20 families, 250 species.

      Order Cheilostomata
 Zooids generally shaped like a flat box, walls calcified; orifice frontal, closed by a hinged operculum; specialized zooids commonly present; embryos often developing in ooecia (brood chambers); Upper Jurassic to present; about 70 families, 2,750 species.

Critical appraisal
      Classification of bryozoans began in 1837 when the freshwater and marine Bryozoa were separated into the classes now known as Phylactolaemata and Gymnolaemata. Later a third class, the Stenolaemata, was separated from the Gymnolaemata. The cyclostomes and the fossil trepostomes were placed in the new class, which was acceptable to many paleontologists. In recent years, the cryptostomes have also been placed in the Stenolaemata. The most satisfactory system, therefore, separates the bryozoans into three classes, distinct since the beginning of the fossil record.

      Most of the bryozoan orders were named many years ago. Cheilostomata, Ctenostomata, and Cyclostomata were named in 1852; Trepostomata was named in 1882; and Cryptostomata was named in 1883. In 1964 a Soviet bryozoologist introduced a new order, Cystoporata, which includes the Paleozoic ceramoporoids and fistuliporoids. Some authorities believe that bryozoans are related to entoprocts (phylum Entoprocta (entoproct)), which possess a somewhat similar feeding apparatus, but the evidence is conflicting and opinion is divided. Molecular analyses do not support a close relationship between the two groups.

Additional Reading
J.S. Ryland, Bryozoans (1970), is a general survey of fossil and living bryozoans for the nonspecialist. Advanced accounts include Libbie Henrietta Hyman, “The Lophophorate Coelomates—Phylum Ectoprocta,” ch. 20 in the author's Invertebrates, vol. 5, “Smaller Coelomate Groups” (1959); Robert M. Woollacott and Russell L. Zimmer (eds.), Biology of Bryozoans (1977); and J.S. Ryland, “Physiology and Ecology of Marine Bryozoans,” a review in Advances in Marine Biology, vol. 14, pp. 285–443 (1976). Proceedings of the seventh international conference of the International Bryozoology Association, held in 1986, resulted in the collection of current research in June R.P. Ross (ed.), Bryozoa: Present and Past (1987). Other contributions to the subject are found in Richard S. Boardman, Alan H. Cheetham, and William A. Oliver, Jr. (eds.), Animal Colonies: Development and Function Through Time (1973); G. Larwood and B.R. Rosen (eds.), Biology and Systematics of Colonial Organisms (1979); Jeremy B.C. Jackson, Leo W. Buss, and Robert E. Cook (eds.), Population Biology and Evolution of Clonal Organisms (1985); and J.L. Harper, B.R. Rosen, and J. White (eds.), The Growth and Form of Modular Organisms (1986). Well-illustrated surveys of the bryozoans may be found on pp. 667–677 of ch. 26, “Lophophorates,” in Vicki Pearse et al., Living Invertebrates (1987), and on pp. 238–242 of ch. 14, “Lesser Lights,” in Ralph Buchsbaum et al., Animals Without Backbones, 3rd ed. (1987). Extensive introductions are offered in the four works belonging to the “Synopses of the British Fauna” series: J.S. Ryland and P.J. Hayward, British Anascan Bryozoans: Cheilostomata, Anasca: Keys and Notes for the Identification of the Species (1977); P.J. Hayward and J.S. Ryland, British Ascophoran Bryozoans (1979); P.J. Hayward, Ctenostome Bryozoans (1985); and P.J. Hayward and J.S. Ryland, Cyclostome Bryozoans (1985). A classification of extant Bryozoa is provided by J.S. Ryland, “Bryozoa,” pp. 743–769, vol. 2, in Sybil P. Parker (ed.), Synopsis and Classification of Living Organisms, 2 vol. (1982).John S. Ryland

* * *

Universalium. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Moss animal — Moss Moss (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and… …   The Collaborative International Dictionary of English

  • moss animal — moss′ an imal n. ivt bryozoan 2) • Etymology: 1880–85 …   From formal English to slang

  • moss animal — noun sessile aquatic animal forming mossy colonies of small polyps each having a curved or circular ridge bearing tentacles; attach to stones or seaweed and reproduce by budding • Syn: ↑bryozoan, ↑polyzoan, ↑sea mat, ↑sea moss • Hypernyms:… …   Useful english dictionary

  • moss animal — noun a minute sedentary colonial aquatic animal found encrusting rocks or seaweed or forming stalked fronds. [Phylum Bryozoa.] …   English new terms dictionary

  • moss animal — noun Date: 1881 bryozoan …   New Collegiate Dictionary

  • Moss — (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and simple… …   The Collaborative International Dictionary of English

  • Moss agate — Moss Moss (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and… …   The Collaborative International Dictionary of English

  • Moss berry — Moss Moss (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and… …   The Collaborative International Dictionary of English

  • Moss campion — Moss Moss (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and… …   The Collaborative International Dictionary of English

  • Moss land — Moss Moss (m[o^]s; 115), n. [OE. mos; akin to AS. me[ o]s, D. mos, G. moos, OHG. mos, mios, Icel. mosi, Dan. mos, Sw. mossa, Russ. mokh , L. muscus. Cf. {Muscoid}.] 1. (Bot.) A cryptogamous plant of a cellular structure, with distinct stem and… …   The Collaborative International Dictionary of English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”