metric space

metric space
a space with a metric defined on it.

* * *

In mathematics, a set of objects equipped with a concept of distance.

The objects can be thought of as points in space, with the distance between points given by a distance formula, such that: (1) the distance from point A to point B is zero if and only if A and B are identical, (2) the distance from A to B is the same as from B to A, and (3) the distance from A to B plus that from B to C is greater than or equal to the distance from A to C (the triangle inequality). Two-and three-dimensional Euclidean spaces are metric spaces, as are inner product spaces, vector spaces, and certain topological spaces (see topology).

* * *

      in mathematics, especially topology, an abstract set with a distance function, called a metric, that specifies a nonnegative distance between any two of its points in such a way that the following properties hold: (1) the distance from the first point to the second equals zero if and only if the points are the same, (2) the distance from the first point to the second equals the distance from the second to the first, and (3) the sum of the distance from the first point to the second and the distance from the second point to a third exceeds or equals the distance from the first to the third. The last of these properties is called the triangle inequality. The French mathematician Maurice Fréchet (Fréchet, Maurice) initiated the study of metric spaces in 1905.

      The usual distance function on the real number line is a metric, as is the usual distance function in Euclidean n-dimensional space. There are also more exotic examples of interest to mathematicians. Given any set of points, the discrete metric specifies that the distance from a point to itself equal 0 while the distance between any two distinct points equal 1. The so-called taxicab metric on the Euclidean plane declares the distance from a point (xy) to a point (zw) to be |x − z| + |y − w|. This “taxicab distance” gives the minimum length of a path from (xy) to (zw) constructed from horizontal and vertical line segments. In analysis there are several useful metrics on sets of bounded real-valued continuous (continuity) or integrable (integration) functions.

      Thus, a metric generalizes the notion of usual distance to more general settings. Moreover, a metric on a set X determines a collection of open sets, or topology, on X when a subset U of X is declared to be open if and only if for each point p of X there is a positive (possibly very small) distance r such that the set of all points of X of distance less than r from p is completely contained in U. In this way metric spaces provide important examples of topological spaces.

      A metric space is said to be complete if every sequence of points in which the terms are eventually pairwise arbitrarily close to each other (a so-called Cauchy sequence) converges to a point in the metric space. The usual metric on the rational numbers is not complete since some Cauchy sequences of rational numbers do not converge to rational numbers. For example, the rational number sequence 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, … converges to π, which is not a rational number. However, the usual metric on the real numbers (real number) is complete, and, moreover, every real number is the limit of a Cauchy sequence of rational numbers. In this sense, the real numbers form the completion of the rational numbers. The proof of this fact, given in 1914 by the German mathematician Felix Hausdorff (Hausdorff space), can be generalized to demonstrate that every metric space has such a completion.

Stephan C. Carlson

* * *

Universalium. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… …   Wikipedia

  • metric space — metrinė erdvė statusas T sritis fizika atitikmenys: angl. metric space vok. metrischer Raum, m rus. метрическое пространство, n pranc. espace métrique, m …   Fizikos terminų žodynas

  • Metric space aimed at its subspace — In mathematics, a metric space aimed at its subspace is a categorical construction that has a direct geometric meaning. It is also a useful step toward the construction of the metric envelope, or tight span, which are basic (injective) objects of …   Wikipedia

  • metric space — noun a set of points such that for every pair of points there is a nonnegative real number called their distance that is symmetric and satisfies the triangle inequality • Hypernyms: ↑mathematical space, ↑topological space • Hyponyms: ↑Euclidean… …   Useful english dictionary

  • metric space — noun Date: 1927 a mathematical set for which a metric is defined for any pair of elements …   New Collegiate Dictionary

  • metric space — noun Any space whose elements are points, and between any two of which a non negative real number can be defined as the distance between the points; an example is Euclidean space …   Wiktionary

  • Complete metric space — Cauchy completion redirects here. For the use in category theory, see Karoubi envelope. In mathematical analysis, a metric space M is called complete (or Cauchy) if every Cauchy sequence of points in M has a limit that is also in M or,… …   Wikipedia

  • Convex metric space — An illustration of a convex metric space. In mathematics, convex metric spaces are, intuitively, metric spaces with the property any segment joining two points in that space has other points in it besides the endpoints. Formally, consider a… …   Wikipedia

  • Injective metric space — In metric geometry, an injective metric space, or equivalently a hyperconvex metric space, is a metric space with certain properties generalizing those of the real line and of L∞ distances in higher dimensional vector spaces. These properties can …   Wikipedia

  • Probabilistic metric space — A probabilistic metric space is a generalization of metric spaces where the distance is no longer defined on positive real numbers, but on distribution functions. Let D + be the set of all probability distribution functions F such that F (0) = 0… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”