- hypersurface
-
/huy"peuhr serr'fis/, n.a mathematical object that generalizes the concept of surface from three-dimensional Euclidean space to hyperspace.[1905-10; HYPER- + SURFACE]
* * *
Universalium. 2010.
* * *
Universalium. 2010.
Hypersurface — For differential geometry usage, see glossary of differential geometry and topology. In geometry, a hypersurface is a generalization of the concept of hyperplane. Suppose an enveloping manifold M has n dimensions; then any submanifold of M of n − … Wikipedia
Hypersurface — En géométrie différentielle, une hypersurface est une généralisation en dimension supérieure des courbes en dimension 2 ou des surfaces en dimension 3. Une hypersurface N d une variété différentielle M est une sous variété de M de codimension 1.… … Wikipédia en Français
hypersurface — hiperpaviršius statusas T sritis fizika atitikmenys: angl. hypersurface vok. Hyperfläche, f rus. гиперповерхность, f pranc. hypersurface, f … Fizikos terminų žodynas
hypersurface — noun Date: circa 1909 a figure that is the analogue in hyperspace of a surface in three dimensional space … New Collegiate Dictionary
hypersurface — noun A dimensional surface in a space (often a Euclidean space) of dimension +1 … Wiktionary
hypersurface — hy·per·surface … English syllables
hypersurface — “+ noun Etymology: hyper + surface : a surface that is the analogue in hyperspace of a surface in three dimensional space * * * /huy peuhr serr fis/, n. a mathematical object that generalizes the concept of surface from three dimensional… … Useful english dictionary
Coble hypersurface — In algebraic geometry, a Coble hypersurface is one of the hypersurfaces associated to the Jacobian variety of a curve of genus 2 or 3 by Arthur Coble. There are two similar but different types of Coble hypersurfaces. The Kummer variety of the… … Wikipedia
CR manifold — In mathematics, a CR manifold is a differentiable manifold together with a geometric structure modeled on that of a real hypersurface in a complex vector space, or more generally modeled on an edge of a wedge. Formally, a CR manifold is a… … Wikipedia
SYSTÈMES DYNAMIQUES DIFFÉRENTIABLES — Sans doute née avec le mémoire que Poincaré écrivit en 1881 «sur les courbes définies par des équations différentielles», où l’étude quantitative (analytique) locale des équations différentielles dans le champ complexe est remplacée par leur… … Encyclopédie Universelle