haversine

haversine
/hav"euhr suyn'/, n. Trigonom.
one half the versed sine of a given angle or arc.
[1870-75; HA(LF) + VER(SED) + SINE1]

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Haversine formula — The haversine formula is an equation important in navigation, giving great circle distances between two points on a sphere from their longitudes and latitudes. It is a special case of a more general formula in spherical trigonometry, the law of… …   Wikipedia

  • haversine — noun The haversed sine …   Wiktionary

  • haversine — [ havəsʌɪn] (also haversin) noun Mathematics half of a versed sine. Origin C19: contr. of half versed sine …   English new terms dictionary

  • haversine — hav·er·sine …   English syllables

  • haversine — /ˈhævəsaɪn/ (say havuhsuyn) noun Trigonometry half the versed sine; used especially in navigation to give great circle distances between two points on a sphere from their longitudes and latitudes. {abbreviation of ha(lf) versine (versed sine) …  

  • haversine — n. (also haversin) Math. half of a versed sine. Etymology: contr …   Useful english dictionary

  • Fórmula del Haversine — Este artículo fue creado a partir de la traducción del artículo Haversine formula de la Wikipedia en inglés, bajo licencia Creative Commons Atribución Compartir Igual 3.0 y GFDL. Seno, coseno y verseno de θ en base a la circunferencia… …   Wikipedia Español

  • Versine — The versine or versed sine, versin(θ), is a trigonometric function equal to 1 − cos(θ) and 2sin2(½θ). It appeared in some of the earliest trigonometric tables and was once widespread, but it is now little used. There are several related functions …   Wikipedia

  • Great-circle distance — The great circle distance is the shortest distance between any two points on the surface of a sphere measured along a path on the surface of the sphere (as opposed to going through the sphere s interior). Because spherical geometry is rather… …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”