Hausdorff space

Hausdorff space
/hows"dawrf, howz"-/, Math.
a topological space in which each pair of points can be separated by two disjoint open sets containing the points.
[named after Felix Hausdorff (1868-1942), German mathematician, who first described it]

* * *

      in mathematics, type of topological space named for the German mathematician Felix Hausdorff. A topological space is a generalization of the notion of an object in three-dimensional space. It consists of an abstract set of points along with a specified collection of subsets, called open sets, that satisfy three axioms: (1) the set itself and the empty set are open sets, (2) the intersection of a finite number of open sets is open, and (3) the union of any collection of open sets is an open set. A Hausdorff space is a topological space with a separation property: any two distinct points can be separated by disjoint open sets—that is, whenever p and q are distinct points of a set X, there exist disjoint open sets Up and Uq such that Up contains p and Uq contains q.

      The real number line becomes a topological space when a set U of real numbers is declared to be open if and only if for each point p of U there is an open interval centred at p and of positive (possibly very small) radius completely contained in U. Thus, the real line also becomes a Hausdorff space since two distinct points p and q, separated a positive distance r, lie in the disjoint open intervals of radius r/2 centred at p and q, respectively. A similar argument confirms that any metric space, in which open sets are induced by a distance function, is a Hausdorff space. However, there are many examples of non-Hausdorff topological spaces, the simplest of which is the trivial topological space consisting of a set X with at least two points and just X and the empty set as the open sets. Hausdorff spaces satisfy many properties not satisfied generally by topological spaces. For example, if two continuous (continuity) functions f and g map the real line into a Hausdorff space and f(x) = g(x) for each rational number x, then f(x) = g(x) for each real number x.

      Hausdorff included the separation property in his axiomatic description of general spaces in Grundzüge der Mengenlehre (1914; “Elements of Set Theory”). Although later it was not accepted as a basic axiom for topological spaces, the Hausdorff property is often assumed in certain areas of topological research. It is one of a long list of properties that have become known as “separation axioms” for topological spaces.

Stephan C. Carlson
 

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Hausdorff space — In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space in which distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space …   Wikipedia

  • Hausdorff space — /hows dawrf, howz /, Math. a topological space in which each pair of points can be separated by two disjoint open sets containing the points. [named after Felix Hausdorff (1868 1942), German mathematician, who first described it] …   Useful english dictionary

  • Hausdorff space — noun A topological space in which for any two distinct points x and y, there is a pair of disjoint open sets U and V such that and . Syn: T2 space (T<small>2</small> space) …   Wiktionary

  • Completely Hausdorff space — Separation Axioms in Topological Spaces Kolmogorov (T0) version T0 | T1 | T2 | T2½ | completely T2 T3 | T3½ | T4 | T5 | T6 In topology, an Urysohn space, or T2½ spac …   Wikipedia

  • Locally Hausdorff space — In mathematics, in the field of topology, a topological space is said to be locally Hausdorff if every point has an open neighbourhood that is Hausdorff under the subspace topology.Here are some facts:* Every Hausdorff space is locally Hausdorff …   Wikipedia

  • Weak Hausdorff space — In mathematics, a weak Hausdorff space is a topological space where the image of every continuous map from a compact Hausdorff space into the space is closed. [cite web |url=http://neil strickland.staff.shef.ac.uk/courses/homotopy/cgwh.pdf |title …   Wikipedia

  • Continuous functions on a compact Hausdorff space — In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by C(X), is a vector… …   Wikipedia

  • Hausdorff — may refer to:* A Hausdorff space, when used as an adjective, as in the real line is Hausdorff. * Felix Hausdorff, the German mathematician that Hausdorff spaces are named after. * Hausdorff dimension, a measure theoretic concept of dimension. *… …   Wikipedia

  • Collectionwise Hausdorff space — In mathematics, in the field of topology, a topological space is said to be collectionwise Hausdorff if given any closed discrete collection of points in the topological space, there are pairwise disjoint open sets containing the points. Every T1 …   Wikipedia

  • Hausdorff-Trennungsaxiom — Hausdorff Raum (T2) berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von topologischer Raum präregulärer Raum ( …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”