GPS

GPS
Global Positioning System. See NAVSTAR Global Positioning System.

* * *

Introduction
in full  Global Positioning System 

      space-based radio-navigation system that broadcasts highly accurate navigation pulses to users on or near the Earth. In the United States' Navstar GPS, 24 main satellites in 6 orbits circle the Earth every 12 hours. In addition, Russia maintains a constellation called GLONASS (Global Navigation Satellite System), and in 2007 the European Union approved financing for the launch of 30 satellites to form its own version of GPS, known as Galileo, which is projected to be fully operational by 2013. China launched two satellites in 2000 and another in 2003 as part of a local navigation system first known as Beidou (“Big Dipper”). In 2006, China, which had a limited participation in Galileo, announced plans to expand Beidou to a full GPS constellation of 35 satellites, variously known as Beidou-2, or Compass, and that it intended to start offering GPS services in Asia beginning in 2008.

      A GPS receiver operated by a user on Earth measures the time it takes radio signals to travel from four or more satellites to its location, calculates the distance to each satellite, and from this calculation determines the user's longitude, latitude, and altitude. The U.S. Department of Defense originally developed the Navstar constellation for military use, but a less precise form of the service is available free of charge to civilian users around the globe. The basic civilian service will locate a receiver within 10 metres (33 feet) of its true location, though various augmentation techniques can be used to pinpoint the location within less than 1 cm (0.4 inch). With such accuracy and the ubiquity of the service, GPS has evolved far beyond its original military purpose and has created a revolution in personal and commercial navigation. Battlefield missiles and artillery projectiles use GPS signals to determine their positions and velocities, but so do the U.S. space shuttle and the International Space Station as well as commercial jetliners and private airplanes. Ambulance fleets, family automobiles, and railroad locomotives benefit from GPS positioning, which also serves farm tractors, ocean liners, hikers, and even golfers. Many GPS receivers are no larger than a pocket calculator and are powered by disposable batteries, while GPS computer chips the size of a baby's fingernail have been installed in wristwatches, cellular telephones, and personal digital assistants.

Triangulation
      The principle behind the unprecedented navigational capabilities of GPS is triangulation. To triangulate, a GPS receiver precisely measures the time it takes for a satellite signal to make its brief journey to Earth—less than a tenth of a second. Then it multiplies that time by the speed of a radio wave—300,000 km (186,000 miles) per second—to obtain the corresponding distance between it and the satellite. This puts the receiver somewhere on the surface of an imaginary sphere with a radius equal to its distance from the satellite. When signals from three other satellites are similarly processed, the receiver's built-in computer calculates the point at which all four spheres intersect, effectively determining the user's current longitude, latitude, and altitude. (In theory, three satellites would normally provide an unambiguous three-dimensional fix, but in practice at least four are used to offset inaccuracy in the receiver's clock.) In addition, the receiver calculates current velocity (speed and direction) by measuring the instantaneous Doppler effect shifts created by the combined motion of the same four satellites.

      In the Navstar system, each satellite broadcasts its navigation signals on two frequencies—1575.42 megahertz (military) and 1227.6 megahertz (civilian). These carrier waves (carrier wave) are modulated by two pseudo-random binary pulse trains: a 1-megabit-per-second civilian C/A-code (coarse acquisition code) and a 10-megabit-per-second military P-code (precision code). Until 2000, a feature known as selective availability (S/A) intentionally degraded the civilian signal's accuracy; S/A was terminated in part because of safety concerns related to the increasing use of GPS by civilian marine vessels and aircraft. Unaugmented civilian GPS now gives an error variance, for horizontal distances, of 30 metres (100 feet) with a probability of 95 percent—that is, 95 percent of the time the reported location is within 30 metres of the true location. Typical horizontal accuracy is about 10 metres (30 feet; compared with 100 metres [330 feet] with S/A), while vertical accuracy, or altitude, is approximately half as precise. The Doppler effect allows receivers to determine a user's velocity to an accuracy of about 1 metre (3 feet) per second. The unaugmented military signal, meanwhile, has a horizontal error variance of less than 3 metres (10 feet).

Augmentation
      Although the travel time of a satellite signal to Earth is only a fraction of a second, much can happen to it in that interval. For example, electrically charged particles in the ionosphere (ionosphere and magnetosphere) and density variations in the troposphere may act to slow and distort satellite signals. These influences can translate into positional errors for GPS users—a problem that can be compounded by timing errors in GPS receiver clocks. Further errors may be introduced by relativistic time dilations, a phenomenon in which a satellite's clock and a receiver's clock, located in different gravitational fields and traveling at different velocities, tick at different rates. Finally, the single greatest source of error to users of the Navstar system is the lower accuracy of the civilian C/A-code pulse. However, various augmentation methods exist for improving the accuracy of both the military and the civilian systems.

      When positional information is required with pinpoint precision, users can take advantage of differential GPS techniques. Differential navigation employs a stationary “base station” that sits at a known position on the ground and continuously monitors the signals being broadcast by GPS satellites in its view. It then computes and broadcasts real-time navigation corrections to nearby roving receivers. Each roving receiver, in effect, subtracts its position solution from the base station's solution, thus eliminating any statistical errors common to the two. The U.S. Coast Guard maintains a network of such base stations and transmits corrections over radio beacons covering most of the United States. Other differential corrections are encoded within the normal broadcasts of commercial radio stations. Farmers receiving these broadcasts have been able to direct their field equipment with great accuracy, making precision farming a common term in agriculture.

      Another GPS augmentation technique uses the carrier waves that convey the satellites' navigation pulses to Earth. Because the length of the carrier wave is more than 1,000 times shorter than the basic navigation pulses, this “carrier-aided” approach, under the right circumstances, can reduce navigation errors to less than 1 cm (0.4 inch). The dramatically improved accuracy stems primarily from the shorter length and much greater numbers of carrier waves impinging on the receiver's antenna each second.

      Yet another augmentation technique is known as geosynchronous overlays. Geosynchronous overlays employ GPS payloads “piggybacked” aboard commercial communication satellites that are placed in geostationary orbit some 35,000 km (22,000 miles) above the Earth. These relatively small payloads broadcast civilian C/A-code pulse trains to ground-based users. The U.S. government is enlarging the Navstar constellation with geosynchronous overlays to achieve improved coverage, accuracy, and survivability. Both the European Union and Japan are installing their own geosynchronous overlays.

The Navstar system
      The Navstar GPS system consists of three major segments: the space segment, the control segment, and the user segment. The space component is made up of the Navstar constellation in orbit around the Earth. The first satellite was an experimental Block I model launched in 1978. Nine more of these developmental satellites followed over the next decade, and 23 heavier and more-capable Block II production models were sent into space from 1989 to 1993. The launch of the 24th Block II satellite in 1994 completed the GPS constellation, which now consists of two dozen Block II satellites (plus three spares orbiting in reserve) marching in single file in six circular orbits around the Earth. The orbits are arranged so that at least five satellites are in view from most points on Earth at all times.

 A typical Block II satellite (see figure—>) weighs approximately 900 kg (2,000 pounds) and, with its solar panels extended, is about 17 metres (56 feet) across. Its key elements are the winglike solar arrays that generate electrical power from sunlight, the 12 helical antennas that transmit navigation pulses to users on the ground, and its long, spearlike radio antenna that picks up instructions from control engineers. As a satellite coasts through its 12-hour orbit, its main body pivots continuously and the solar arrays swivel, keeping its navigation antennas pointing toward Earth's centre and its solar arrays aligned perpendicular to the Sun's rays.

      The control segment consists of one Master Control Station at a U.S. Air Force base in Colorado and four additional unmanned monitoring stations positioned around the world—Hawaii and Kwajalein Atoll in the Pacific Ocean, Diego Garcia in the Indian Ocean, and Ascension Island in the Atlantic Ocean. Each monitoring station tracks all of the GPS satellites in its view to check for orbital changes. Variations in satellite orbits are caused by gravitational pulls from the Moon and Sun, the nonspherical shape of the Earth, and the pressure of solar radiation. This information is processed at the Master Control Station, and corrected orbital information is quickly relayed back to the satellites via large ground antennas. Every 18 months on average, the satellites within a given ring drift too far from their original configuration and must be nudged back with onboard thrusters fired by ground control.

      The user segment consists of the millions of GPS receivers that pick up and decode the satellite signals. Hundreds of different types of GPS receivers are in use; some are designed for installation in automobiles, trucks, submarines, ships, aircraft, and orbiting satellites, whereas smaller models have been developed for personal navigation.

Tom S. Logsdon

Additional Reading
Tom Logsdon, Understanding the Navstar: GPS, GIS, and IVHS (1995), explains how GPS works, how its performance is being enhanced with various navigation aids, and how it is being used in a multitude of applications. Pratup Misra and Per Enge, Global Positioning System: Signals, Measurements and Performance (2001), is a graduate-level textbook that focuses on the engineering of the overall GPS, its satellites, receivers, and ground equipment. Elliot Kaplan (ed), Understanding GPS: Principles and Application (1996), provides wide-ranging coverage of GPS by industry experts.

* * *


Universalium. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • GPS·C — GPS·C, short for GPS Correction , is a Differential GPS data source for most of Canada maintained by the Canadian Active Control System, part of Natural Resources Canada. When used with an appropriate receiver, GPS·C improves real time accuracy… …   Wikipedia

  • GPS — GPS, para saber dónde estás parado Saltar a navegación, búsqueda GPS, para saber dónde estás parado Título original GPS, para saber dónde estás parado Títulos en otras …   Wikipedia Español

  • GPS — [ ʒepeɛs ] n. m. • 1989; sigle angl., de Global Positioning System « système de repérage universel » ♦ Système de localisation qui permet de connaître la position d un mobile grâce à un récepteur de signaux émis par un réseau de satellites. Un… …   Encyclopédie Universelle

  • GPS — (el. gps) sb., GPS’en, GPS’er, GPS’erne (et navigationssystem) (fork. for Global Positioning System) …   Dansk ordbog

  • gps — (el. GPS) sb., gps’en, gps’er, gps’erne (et navigationssystem) (fork. for Global Positioning System) …   Dansk ordbog

  • GPS — UK US /ˌdʒiːpiːˈes/ noun [U] IT ► ABBREVIATION for Global Positioning System: a way of using satellite data to show where something is on a map, give users directions, etc.: »The unit uses GPS to determine the delivery truck s position. »GPS… …   Financial and business terms

  • GPS — steht für: Global Positioning System, ein satellitengestütztes System zur weltweiten Positionsbestimmung sowie: Ganzheitliches Produktionssystem Ganzpflanzensilage, Gärfutter für landwirtschaftliche Nutztiere (Wiederkäuer) General Problem Solver …   Deutsch Wikipedia

  • GPS — sigla ES ingl. Global Position System, sistema di posizionamento mondiale, metodo di orientamento satellitare usato spec. per la navigazione aerea e navale …   Dizionario italiano

  • GPS — [ˌdʒi: pi: ˈes] n [U] Global Positioning System a system that uses radio signals from ↑satellites to show your exact position on the Earth on a special piece of equipment …   Dictionary of contemporary English

  • GPS — Abk. für engl. global positioning system »weltweites Standortbestimmungssystem«> satellitengestütztes Navigationssystem, mit dem Positionen auf der Erde mit sehr großer Genauigkeit ermittelt werden können …   Das große Fremdwörterbuch

  • GPS — [ ,dʒi pi es ] noun uncount global positioning system: a system for finding exactly where you are anywhere in the world using SATELLITES (=objects that go around the earth high in the sky) …   Usage of the words and phrases in modern English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”