- diffraction
-
/di frak"sheuhn/, n. Physics.1. the phenomenon exhibited by wave fronts that, passing the edge of an opaque body, are modulated, thereby causing a redistribution of energy within the front: it is detectable in light waves by the presence of a pattern of closely spaced dark and light bands (diffraction pattern) at the edge of a shadow.2. the bending of waves, esp. sound and light waves, around obstacles in their path.[1665-75; < NL diffraction- (s. of diffractio) a breaking up, equiv. to L diffract(us) broken up (ptp. of diffringere) + -ion- -ION. See DIF-, FRACTION]
* * *
Spreading of waves around obstacles.It occurs with water waves, sound, electromagnetic waves (see electromagnetic radiation), and small moving particles such as atoms, neutrons, and electrons, which show wavelike properties. When a beam of light falls on the edge of an object, it is bent slightly by the contact and causes a blur at the edge of the shadow of the object. Waves of long wavelength are diffracted more than those of short wavelength.* * *
▪ physicsthe spreading of waves around obstacles. Diffraction takes place with sound; with electromagnetic radiation, such as light, X-rays, and gamma rays; and with very small moving particles such as atoms, neutrons, and electrons, which show wavelike properties. One consequence of diffraction is that sharp shadows are not produced. The phenomenon is the result of interference (i.e., when waves are superimposed, they may reinforce or cancel each other out) and is most pronounced when the wavelength of the radiation is comparable to the linear dimensions of the obstacle. When sound of various wavelengths or frequencies is emitted from a loudspeaker, the loudspeaker itself acts as an obstacle and casts a shadow to its rear so that only the longer bass notes are diffracted there. When a beam of light falls on the edge of an object, it will not continue in a straight line but will be slightly bent by the contact, causing a blur at the edge of the shadow of the object; the amount of bending will be proportional to the wavelength. When a stream of fast particles impinges on the atoms of a crystal, their paths are bent into a regular pattern, which can be recorded by directing the diffracted beam onto a photographic film.* * *
Universalium. 2010.