- deuterium
-
/dooh tear"ee euhm, dyooh-/, n. Chem.an isotope of hydrogen, having twice the mass of ordinary hydrogen; heavy hydrogen. Symbol: D; at. wt.: 2.01; at. no.: 1.[1933; < Gk deúter(os) second (see DEUTERO-) + -IUM]
* * *
Harold C. Urey won a Nobel Prize for its discovery and isolation. Its nucleus contains one proton and one neutron. A stable substance found in naturally occurring hydrogen compounds to the extent of about 0.015%, deuterium can be purified by distillation of hydrogen or by electrolysis of water. It enters into all the same chemical reactions as ordinary hydrogen; it forms D2 and HD, analogous to molecular hydrogen (H2), and D2O (heavy water), analogous to ordinary water (H2O). Nuclear fusion of deuterium atoms or of deuterium and tritium at high temperatures releases enormous amounts of energy. Such reactions have been used in nuclear weapons and experimental power reactors. Deuterium is useful as a tracer in research into reaction mechanisms and biochemical pathways.* * *
▪ chemical isotope(D, or 2H), also called heavy hydrogen,isotope of hydrogen with atomic weight of approximately 2. Its nucleus, consisting of one proton and one neutron, has double the mass of the nucleus of ordinary hydrogen. Deuterium is a stable atomic species found in natural hydrogen compounds to the extent of 0.014 to 0.015 percent.Deuterium was discovered (1931) by the American chemist Harold C. Urey (Urey, Harold C.) (for which he was awarded the Nobel Prize for Chemistry in 1934) and his associates F.G. Brickwedde and G.M. Murphy. Urey predicted a difference between the vapour pressures of molecular hydrogen (H2) and of a corresponding molecule with one hydrogen atom replaced by deuterium (HD) and, thus, the possibility of separating these substances by distillation of liquid hydrogen. The deuterium was detected (by its atomic spectrum) in the residue of a distillation of liquid hydrogen. Deuterium was first prepared in pure form in 1933 by G.N. Lewis, using the electrolytic method of concentration discovered by E.W. Washburn. When water is electrolyzed—i.e., decomposed by an electric current (actually a water solution of an electrolyte, usually sodium hydroxide, is used)—the hydrogen gas produced contains a smaller fraction of deuterium than the remaining water, and, hence, deuterium is concentrated in the water. Very nearly pure deuterium oxide (D2O; heavy water) is secured when the amount of water has been reduced to about one hundred-thousandth of its original volume by continued electrolysis. This was the standard method of preparation of D2O before World War II.Deuterium enters into all chemical reactions characteristic of ordinary hydrogen, forming equivalent compounds. Deuterium, however, reacts more slowly than ordinary hydrogen, a criterion that distinguishes the two forms of hydrogen. Because of this property, among others, deuterium is extensively used as an isotopic tracer in investigations of chemical and biochemical reactions involving hydrogen.The nuclear fusion of deuterium atoms or of deuterium and the heavier hydrogen isotope, tritium, at high temperature is accompanied by release of an enormous amount of energy; such reactions have been used in thermonuclear weapons. Since 1953, the stable solid substance lithium deuteride (LiD) has been used in place of both deuterium and tritium.Comparison of the physical properties of molecular forms of hydrogenThe physical properties of the molecular form of the isotope deuterium (D2) and the molecules of hydrogen deuteride (HD) are compared with those of the molecules of ordinary hydrogen (H2) in the Table (Comparison of the physical properties of molecular forms of hydrogen).* * *
Universalium. 2010.