**Boolean ring** — In mathematics, a Boolean ring R is a ring (with identity) for which x 2 = x for all x in R ; that is, R consists only of idempotent elements.Boolean rings are automatically commutative and of characteristic 2 (see below for proof). A Boolean… … Wikipedia

**Boolean ring** — noun A ring whose multiplicative operation is idempotent. Let be the ring of integers and let be its ideal of even integers. Then the quotient ring is a Boolean ring … Wiktionary

**Boolean ring** — Math. a nonempty collection of sets having the properties that the union of two sets of the collection is a set in the collection and that the relative complement of each set with respect to any other set is in the collection. Cf. algebra of sets … Useful english dictionary

**Boolean algebras canonically defined** — Boolean algebras have been formally defined variously as a kind of lattice and as a kind of ring. This article presents them more neutrally but equally formally as simply the models of the equational theory of two values, and observes the… … Wikipedia

**Boolean algebra (structure)** — For an introduction to the subject, see Boolean algebra#Boolean algebras. For the elementary syntax and axiomatics of the subject, see Boolean algebra (logic). For an alternative presentation, see Boolean algebras canonically defined. In abstract … Wikipedia

**Ring (mathematics)** — This article is about algebraic structures. For geometric rings, see Annulus (mathematics). For the set theory concept, see Ring of sets. Polynomials, represented here by curves, form a ring under addition and multiplication. In mathematics, a… … Wikipedia

**Boolean algebra (introduction)** — Boolean algebra, developed in 1854 by George Boole in his book An Investigation of the Laws of Thought , is a variant of ordinary algebra as taught in high school. Boolean algebra differs from ordinary algebra in three ways: in the values that… … Wikipedia

**Boolean algebra (logic)** — For other uses, see Boolean algebra (disambiguation). Boolean algebra (or Boolean logic) is a logical calculus of truth values, developed by George Boole in the 1840s. It resembles the algebra of real numbers, but with the numeric operations of… … Wikipedia

**Boolean algebra** — This article discusses the subject referred to as Boolean algebra. For the mathematical objects, see Boolean algebra (structure). Boolean algebra, as developed in 1854 by George Boole in his book An Investigation of the Laws of Thought,[1] is a… … Wikipedia

**Boolean prime ideal theorem** — In mathematics, a prime ideal theorem guarantees the existence of certain types of subsets in a given abstract algebra. A common example is the Boolean prime ideal theorem, which states that ideals in a Boolean algebra can be extended to prime… … Wikipedia