/an"tee mat'euhr, an"tuy-/, n. Physics.
matter composed only of antiparticles, esp. antiprotons, antineutrons, and positrons.
[1950-55; ANTI- + MATTER]

* * *

Substance composed of elementary particles having the mass and electric charge of ordinary matter (such as electrons and protons) but for which the charge and related magnetic properties are opposite in sign.

The existence of antimatter was posited by the electron theory of P.A.M. Dirac. In 1932 the positron (antielectron) was detected in cosmic rays, followed by the antiproton and the antineutron detected through the use of particle accelerators. Positrons, antiprotons, and antineutrons, collectively called antiparticles, are the antiparticles of electrons, protons, and neutrons, respectively. When matter and antimatter are in close proximity, annihilation occurs within a fraction of a second, releasing large amounts of energy.

* * *

      substance composed of subatomic particles (subatomic particle) that have the mass, electric charge, and magnetic moment of the electrons, protons, and neutrons of ordinary matter but for which the electric charge and magnetic moment are opposite in sign. The antimatter particles corresponding to electrons, protons, and neutrons are called positrons (positron) (e+), antiprotons (antiproton) (p), and antineutrons (antineutron) (n); collectively they are referred to as antiparticles (antiparticle). The electrical properties of antimatter being opposite to those of ordinary matter, the positron has a positive charge and the antiproton a negative charge; the antineutron, though electrically neutral, has a magnetic moment opposite in sign to that of the neutron. Matter and antimatter cannot coexist at close range for more than a small fraction of a second because they collide with and annihilate each other, releasing large quantities of energy in the form of gamma rays (gamma ray) or elementary particles.

      The concept of antimatter first arose in theoretical analysis of the duality between positive and negative charge. The work of P.A.M. Dirac (Dirac, P.A.M.) on the energy states of the electron implied the existence of a particle identical in every respect but one—that is, with positive instead of negative charge. Such a particle, called the positron, is not to be found in ordinary stable matter. However, it was discovered in 1932 among particles produced in the interactions of cosmic rays (Cosmos) in matter and thus provided experimental confirmation of Dirac's theory.

      The life expectancy or duration of the positron in ordinary matter is very short. Unless the positron is moving extremely fast, it will be drawn close to an ordinary electron by the attraction between opposite charges. A collision between the positron and the electron results in their simultaneous disappearance, their masses (m) being converted into energy (E) in accordance with the Einstein mass-energy relation (Einstein's mass-energy relation) E = mc2, where c is the velocity of light. This process is called annihilation, and the resultant energy is emitted in the form of gamma rays (gamma ray) (γ), high-energy quanta of electromagnetic radiation. The inverse reaction γ → e+ + e can also proceed under appropriate conditions, and the process is called electron-positron creation, or pair production.

      The Dirac theory predicts that an electron and a positron, because of Coulomb attraction (Coulomb force) of their opposite charges, will combine to form an intermediate bound state, just as an electron and a proton combine to form a hydrogen atom. The e+e bound system is called positronium. The annihilation of positronium into gamma rays has been observed. Its measured lifetime depends on the orientation of the two particles and is on the order of 10−10–10−7 second, in agreement with that computed from Dirac's theory.

      The Dirac wave equation also describes the behaviour of both protons and neutrons and thus predicts the existence of their antiparticles. Antiprotons (antiproton) can be produced by bombarding protons with protons. If enough energy is available—that is, if the incident proton has a kinetic energy of at least 5.6 gigaelectron volts (GeV; 109 eV)—extra particles of proton mass will appear according to the formula E = mc2. Such energies became available in the 1950s at the Bevatron particle accelerator at Berkeley, California. In 1955 a team of physicists led by Owen Chamberlain (Chamberlain, Owen) and Emilio Segrè (Segrè, Emilio) observed that antiprotons are produced by high-energy collisions. Antineutrons (antineutron) also were discovered at the Bevatron by observing their annihilation in matter with a consequent release of high-energy electromagnetic radiation.

      By the time the antiproton was discovered, a host of new subatomic particles had also been discovered; all these particles are now known to have corresponding antiparticles. Thus, there are positive and negative muons (muon), positive and negative pi-mesons (meson), and the K-meson and the anti-K-meson, plus a long list of baryons (baryon) and antibaryons. Most of these newly discovered particles have too short a lifetime to be able to combine with electrons. The exception is the positive muon, which, together with an electron, has been observed to form a muonium atom.

      In 1995 physicists at the European Organization for Nuclear Research ( CERN) in Geneva created the first antiatom, the antimatter counterpart of an ordinary atom—in this case, antihydrogen, the simplest antiatom, consisting of a positron in orbit around an antiproton nucleus. They did so by firing antiprotons through a xenon-gas jet. In the strong electric fields surrounding the xenon nuclei, some antiprotons created pairs of electrons and positrons; a few of the positrons thus produced then combined with the antiprotons to form antihydrogen. Each antiatom survived for only about forty-billionths of a second before it came into contact with ordinary matter and was annihilated. CERN plans to produce larger amounts of antihydrogen in order to study the spectrum of the antihydrogen atom. A comparison with the well-studied spectrum of hydrogen (spectroscopy) could reveal small differences between matter and antimatter, which would have important implications for theories of how matter formed in the early universe (Cosmos).

      Although positrons are readily created in the collisions of cosmic rays, there is no evidence for the existence of large amounts of antimatter in the universe. The Milky Way Galaxy appears to consist entirely of matter, as there are no indications for regions where matter and antimatter meet and annihilate to produce characteristic gamma rays. The implication that matter completely dominates antimatter in the universe appears to be in contradiction to Dirac's theory, which, supported by experiment, shows that particles and antiparticles are always created in equal numbers from energy. (See electron-positron pair production.) The energetic conditions of the early universe should have created equal numbers of particles and antiparticles; mutual annihilation of particle-antiparticle pairs, however, would have left nothing but energy. In the universe today, photons (photon) (energy) outnumber protons (proton) (matter) by a factor of one billion. This suggests that most of the particles created in the early universe were indeed annihilated by antiparticles, while one in a billion particles had no matching antiparticle and so survived to form the matter observed today in stars and galaxies. The tiny imbalance between particles and antiparticles in the early universe is referred to as matter-antimatter asymmetry (Cosmos), and its cause remains a major unsolved puzzle for cosmology and particle physics (physics). One possible explanation is that it involves a phenomenon known as CP violation, which gives rise to a small but significant difference in the behaviour of particles called K-mesons and their antiparticles.

Christine Sutton

* * *

Universalium. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Antimatter — Saltar a navegación, búsqueda Antimatter Información personal Origen Irlanda Info …   Wikipedia Español

  • Antimatter — Основная информация Жанры готик рок дарк эмбиент прогрессивный рок Alternative Rock …   Википедия

  • Antimatter — est un groupe formé par Duncan Patterson (ancien membre du groupe Anathema) et Mick Moss. Ensemble, ils sortent trois albums : Saviour, Lights Out et Planetary Confinement. Juste après la sortie de ce dernier, Patterson quitte le groupe pour …   Wikipédia en Français

  • Antimatter — Allgemeine Informationen Genre(s) Alternative Rock, Dark Rock Gründung 1998 Website …   Deutsch Wikipedia

  • antimatter — [an′ti mat΄ər; an′tīmat΄ər, an′tēmat΄ər] n. a form of matter in which the electrical charge or other property of each constituent particle is the reverse of that in the usual matter of our universe: an atom of antimatter has a nucleus of… …   English World dictionary

  • antimatter — an ti*mat ter ([a^]n t[i^]*m[a^]t t[ e]r), n. (Physics) Matter whch is composed of antiparticles such as antiprotons, positrons, and antineutrons. [PJC] …   The Collaborative International Dictionary of English

  • antimatter — (n.) also anti matter, 1953, from ANTI (Cf. anti ) + MATTER (Cf. matter) (n.) …   Etymology dictionary

  • antimatter — ► NOUN ▪ matter consisting of the antiparticles of the particles making up normal matter …   English terms dictionary

  • Antimatter — For other uses, see Antimatter (disambiguation). Antimatter …   Wikipedia

  • Antimatter —    Matter made up of antiprotons (negatively charged protons), positrons (positively charged electrons) and antineutrons (particles with no charge). In September of 1995 a team of European scientists created antimatter for the first time. See… …   The writer's dictionary of science fiction, fantasy, horror and mythology

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”