- action potential
-
the change in electrical potential that occurs between the inside and outside of a nerve or muscle fiber when it is stimulated, serving to transmit nerve signals. Cf. nerve impulse.[1925-30]
* * *
Brief (about one-thousandth of a second) reversal of electric polarization of the membrane of a nerve or muscle cell.Stimulation of the cell by certain chemicals or by sensory receptor cells causes depolarization of the membrane, permitting an impulse to move along the nerve fibre (in nerve cells) or causing the cell to contract (in muscle cells).* * *
the brief (about one-thousandth of a second) reversal of electric polarization of the membrane of a nerve cell ( neuron) or muscle cell. In the neuron an action potential produces the nerve impulse, and in the muscle cell it produces the contraction required for all movement. Sometimes called a propagated potential because a wave of excitation is actively transmitted along the nerve or muscle fibre, an action potential is conducted at speeds that range from 1 to 100 metres (3 to 300 feet) per second, depending on the properties of the fibre and its environment.Before stimulation, a neuron or muscle cell has a slightly negative electric polarization; that is, its interior has a negative charge compared with the extracellular fluid. This polarized state is created by a high concentration of positively charged sodium ions (ion) outside the cell and a high concentration of negatively charged chloride ions (as well as a lower concentration of positively charged potassium) inside. The resulting resting potential usually measures about −75 millivolts (mV; 0.0075 volt), the minus sign indicating a negative charge inside.In the generation of the action potential, stimulation of the cell by neurotransmitters (neurotransmitter) or by sensory receptor cells partially opens channel-shaped protein molecules in the membrane. sodium diffuses into the cell, shifting that part of the membrane toward a less-negative polarization. If this local potential reaches a critical state called the threshold potential (measuring about −60 mV), then sodium channels open completely. Sodium floods that part of the cell, which instantly depolarizes to an action potential of about +55 mV. Depolarization activates sodium channels in adjacent parts of the membrane, so that the impulse moves along the fibre.If the entry of sodium into the fibre were not balanced by the exit of another ion of positive charge, an action potential could not decline from its peak value and return to the resting potential. The declining phase of the action potential is caused by the closing of sodium channels and the opening of potassium channels, which allows a charge approximately equal to that brought into the cell to leave in the form of potassium ions. Subsequently, protein transport molecules pump sodium ions out of the cell and potassium ions in. This restores the original ion concentrations and readies the cell for a new action potential.The Nobel Prize for Physiology or Medicine was awarded in 1963 to Sir A.L. Hodgkin (Hodgkin, Sir Alan), Sir A.F. Huxley (Huxley, Sir Andrew Fielding), and Sir John Eccles (Eccles, Sir John Carew) for formulating these ionic mechanisms involved in nerve cell activity.* * *
Universalium. 2010.