variables, separation of

variables, separation of

      one of the oldest and most widely used techniques for solving some types of partial differential equations (partial differential equation). A partial differential equation is called linear if the unknown function and its derivatives (derivative) have no exponent greater than one and there are no cross-terms—i.e., terms such as f f′ or ff′′ in which the function or its derivatives appear more than once. An equation is called homogeneous if each term contains the function or one of its derivatives. For example, the equation f′ + f 2 = 0 is homogeneous but not linear, f′ + x2 = 0 is linear but not homogeneous, and fxx + fyy = 0 is both homogeneous and linear.

      If a homogeneous linear equation in two variables has a solution f(xy) that consists of a product of factors g(x) and h(y), each involving only a single variable, the solution of the equation can sometimes be found by substituting the product of these unknown factors in place of the unknown composite function, obtaining in some cases an ordinary differential equation for each variable. For example, if f(xy) is to satisfy the equation fxx + fyy = 0, then by substituting g(x)h(y) for f(xy) the equation becomes gxxh + ghyy = 0, or −gxx/g = hyy/h. Because the left side of the latter equation depends only on the variable x and the right side only on y, the two sides can be equal only if they are both constant. Therefore, −gxx/g = c, or gxx + cg = 0, which is an ordinary differential equation in one variable and which has the solutions g = a sin (xc1/2) and g = a cos (xc1/2). In a similar manner, hyy/h = c, and h = e±yc1/2. Therefore,

f = gh = ae±yc1/2 sin (xc1/2)
and
ae±yc1/2 sin (xc1/2)
are solutions of the original equation
fxx + fyy = 0.
The constants a and c are arbitrary and will depend upon other auxiliary conditions (boundary and initial values) in the physical situation that the solution to the equation will have to satisfy. A sum of terms such as
ae±yc1/2 sin (xc1/2)
with different constants a and c will also satisfy the given differential equation, and, if the sum of an infinite number of terms is taken (called a Fourier series), solutions can be found that will satisfy a wider variety of auxiliary conditions, giving rise to the subject known as Fourier analysis, or harmonic analysis.

      The method of separation of variables can also be applied to some equations with variable coefficients, such as

fxx + x2fy = 0,
and to higher-order equations and equations involving more variables.
 

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Separation des variables — Séparation des variables En mathématiques, la séparation des variables constitue l une des méthodes de résolution des équations différentielles partielles et ordinaires, dont l algèbre permet de réécrire l équation de sorte chacune des deux… …   Wikipédia en Français

  • Séparation de variables — Séparation des variables En mathématiques, la séparation des variables constitue l une des méthodes de résolution des équations différentielles partielles et ordinaires, dont l algèbre permet de réécrire l équation de sorte chacune des deux… …   Wikipédia en Français

  • séparation — [ separasjɔ̃ ] n. f. • 1314; lat. separatio 1 ♦ Action de séparer, de se séparer, fait d être séparé. ⇒ désagrégation, disjonction, dislocation, dispersion; dis . La séparation des éléments d un mélange. Séparation des isotopes (à partir d un… …   Encyclopédie Universelle

  • Separation de l'Eglise et de l'Etat — Séparation de l Église et de l État Demande de traduction Separation of church and state → …   Wikipédia en Français

  • Séparation de l'église et de l'état — Demande de traduction Separation of church and state → …   Wikipédia en Français

  • Séparation de l’Église et de l’État — Séparation de l Église et de l État Demande de traduction Separation of church and state → …   Wikipédia en Français

  • Separation of variables — In mathematics, separation of variables is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation …   Wikipedia

  • Séparation des variables — En mathématiques, la séparation des variables constitue l une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l algèbre permet de réécrire l équation de sorte que chacune des deux variables apparaisse… …   Wikipédia en Français

  • separation of variables — kintamųjų atskyrimas statusas T sritis fizika atitikmenys: angl. separation of variables vok. Separierung der Variablen, f; Variablentrennung, f rus. разделение переменных, n pranc. séparation des variables, f …   Fizikos terminų žodynas

  • séparation des variables — kintamųjų atskyrimas statusas T sritis fizika atitikmenys: angl. separation of variables vok. Separierung der Variablen, f; Variablentrennung, f rus. разделение переменных, n pranc. séparation des variables, f …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”