Lindemann, Ferdinand von

Lindemann, Ferdinand von

▪ German mathematician
born April 12, 1852, Hannover, Hanover [Germany]
died March 1, 1939, Munich, Germany

      German mathematician who is mainly remembered for having proved that the number π (pi) is transcendental—i.e., it does not satisfy any algebraic equation with rational coefficients. This proof established that the classical Greek construction problem of squaring the circle (constructing a square with an area equal to that of a given circle) by compass and straightedge is insoluble.

      Beginning in 1870 Lindemann studied at the University of Göttingen (Göttingen, University of), the University of Munich (Munich, University of), and the University of Erlangen, where he received his doctorate in 1873. Following postgraduate studies he taught at the University of Freiburg (Freiburg, Albert Ludwig University of) from 1877 to 1883.

      Lindemann's proof that π is transcendental was made possible by fundamental methods developed by the French mathematician Charles Hermite (Hermite, Charles) during the 1870s. In particular Hermite's proof of the transcendence of e, the base for natural logarithms (logarithm), was the first time that a number was shown to be transcendental. Lindemann visited Hermite in Paris and learned firsthand of this famous result. Building on Hermite's work, Lindemann published his proof in an article entitled “Über die Zahl π” (1882; “Concerning the Number π”).

      Lindemann's sudden fame led to his appointment in 1883 as professor of mathematics at the University of Königsberg (Königsberg, Albertus University of), Germany (now Kaliningrad, Russia), and 10 years later to a distinguished professorship at the University of Munich. His work in mathematics was primarily in geometry. In Königsberg he headed a distinguished community of young mathematicians that included Adolf Hurwitz (1859–1919), David Hilbert (Hilbert, David) (1862–1943), and Hermann Minkowski (Minkowski, Hermann) (1864–1909).

* * *


Universalium. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Lindemann, Ferdinand von — ► (1852 1939) Matemático alemán. Demostró que el número π es trascendental …   Enciclopedia Universal

  • Ferdinand Von Lindemann — Pour les articles homonymes, voir Lindemann. Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann …   Wikipédia en Français

  • Ferdinand von lindemann — Pour les articles homonymes, voir Lindemann. Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann …   Wikipédia en Français

  • Ferdinand von Lindemann — Infobox Scientist name = Ferdinand von Lindemann |300px image width = 200px caption = Carl Louis Ferdinand von Lindemann birth date = birth date|1852|4|12|mf=y birth place = Hanover, Germany death date = death date and age|1939|3|6|1852|4|12|mf=y …   Wikipedia

  • Ferdinand von Lindemann — Pour les articles homonymes, voir Lindemann. Ferdinand von Lindemann (1852 1939) Carl Louis Ferdinand von Lindemann (12 avril& …   Wikipédia en Français

  • Ferdinand von Lindemann — Carl Louis Ferdinand von Lindemann (* 12. April 1852 in Hannover; † 6. März 1939 in München) war ein deutscher Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Carl Louis Ferdinand von Lindemann — Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann (* 12. April 1852 in Hannover; † 6. März 1939 in München) war ein deutscher Mathematiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Carl Louis Ferdinand von Lindemann — Ferdinand von Lindemann. Carl Louis Ferdinand von Lindemann (* 12 de abril de 1852 en Hannover; † 6 de marzo de 1939 en Múnich) fue un matemático alemán. Es conocido por la demostración en 1882 de que el número π es un número tra …   Wikipedia Español

  • Lindemann , Carl Louis Ferdinand von — (1875–1939) German mathematician Born at Hannover in Germany, Lindemann is principally known for solving one particular mathematical problem, namely the question of whether or not the number π is transcendental. In his paper Über die Zahl π… …   Scientists

  • Lindemann — Lindemann, Ferdinand von …   Enciclopedia Universal

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”