Heisenberg, Werner

Heisenberg, Werner

▪ German physicist and philosopher
Introduction
in full  Werner Karl Heisenberg 
born Dec. 5, 1901, Würzburg, Ger.
died Feb. 1, 1976, Munich, W.Ger.
 German physicist and philosopher who discovered (1925) a way to formulate quantum mechanics in terms of matrices (matrix). For that discovery, he was awarded the Nobel Prize for Physics for 1932. In 1927 he published his uncertainty principle, upon which he built his philosophy and for which he is best known. He also made important contributions to the theories of the hydrodynamics of turbulent flows (turbulent flow), the atomic nucleus, ferromagnetism, cosmic rays (cosmic ray), and subatomic particles (subatomic particle), and he was instrumental in planning the first West German nuclear reactor at Karlsruhe, together with a research reactor in Munich, in 1957. Considerable controversy surrounds his work on atomic research during World War II.

Education
      Heisenberg's father, August Heisenberg, a scholar of ancient Greek philology and modern Greek literature, was a teacher at a gymnasium (classical-humanistic secondary school) and lecturer at the University of Würzburg. Werner's mother, née Anna Wecklein, was the daughter of the rector of the elite Maximilians-Gymnasium in Munich. In 1910 August Heisenberg became a professor of Greek philology at the University of Munich. Werner entered the Maximilians-Gymnasium the following year and soon impressed his teachers with his precocity in mathematics. Heisenberg entered the University of Munich in 1920, becoming a student of Arnold Sommerfeld (Sommerfeld, Arnold), an expert on atomic spectroscopy and exponent of the quantum model of physics. (The idea that certain properties in atomic physics are not continuous and take on only certain discrete, or quantized, values at small scales had been developed by Danish physicist Niels Bohr (Bohr, Niels) in 1913.) Heisenberg finished his formal work for a doctorate in 1923 with a dissertation on hydrodynamics (fluid mechanics).

      Despite a mediocre dissertation defense, Heisenberg's real talents emerged in his work on the anomalous Zeeman effect, in which atomic spectral lines are split into multiple components under the influence of a magnetic field. Heisenberg developed a model that accounted for this phenomenon, though at the cost of introducing half-integer quantum numbers (quantum number), a notion at odds with Bohr's theory as understood to date. While still officially Sommerfeld's student, in 1922 Heisenberg became an assistant and student of Max Born (Born, Max) at the University of Göttingen, where Heisenberg also first met Bohr. In 1924 Heisenberg completed his habilitation, the qualification to teach at the university level in Germany.

Founding of quantum mechanics
      In 1925, after an extended visit to Bohr's Institute of Theoretical Physics at the University of Copenhagen, Heisenberg tackled the problem of spectrum intensities of the electron taken as an anharmonic oscillator (a one-dimensional vibrating system). His position that the theory should be based only on observable quantities was central to his paper of July 1925, “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen” (“Quantum-Theoretical Reinterpretation of Kinematic and Mechanical Relations”). Heisenberg's formalism rested upon noncommutative multiplication; Born, together with his new assistant Pascual Jordan (Jordan, Pascual), realized that this could be expressed using matrix algebra, which they used in a paper submitted for publication in September as “Zur Quantenmechanik” (“On Quantum Mechanics”). By November, Born, Heisenberg, and Jordan had completed “Zur Quantenmechanik II” (“On Quantum Mechanics II”), colloquially known as the “three-man paper,” which is regarded as the foundational document of a new quantum mechanics.

Uncertainty principle
      Other formulations of quantum mechanics were being devised during the 1920s: the bracket notation (using vectors (vector) in a Hilbert space) was developed by P.A.M. Dirac (Dirac, P.A.M.) in England and the wave equation (Schrödinger equation) was worked out by Erwin Schrödinger (Schrödinger, Erwin) in Switzerland (where the Austrian physicist was then working). Schrödinger soon demonstrated that the different formulations were mathematically equivalent, though the physical significance of this equivalence remained unclear. Heisenberg again returned to Bohr's institute in Copenhagen, and their conversations on this topic culminated in Heisenberg's landmark paper of March 1927, “Über den anschulichen Inhalt der quantentheoretischen Kinematik und Mechanik” (“On the Perceptual Content of Quantum Theoretical Kinematics and Mechanics”).

      This paper articulated the uncertainty, or indeterminacy, principle. Quantum mechanics demonstrated, according to Heisenberg, that the momentum (p) and position (q) of a particle could not both be exactly measured simultaneously. Instead, a relation exists between the indeterminacies (Δ) in the measurement of these variables such that ΔpΔq ≥ h/4π (where h is Planck's constant, or about 6.6260693 10−34 joule∙second). Since there exists a lower limit (h/4π) on the product of the uncertainties, if the uncertainty in one variable diminishes toward 0, the uncertainty in the other must increase reciprocally. An analogous relation exists between any pair of canonically conjugate variables, such as energy and time.

      Heisenberg drew a philosophically profound conclusion: absolute causal determinism was impossible, since it required exact knowledge of both position and momentum as initial conditions. Therefore, the use of probabilistic formulations in atomic theory resulted not from ignorance but from the necessarily indeterministic relationship between the variables. This viewpoint was central to the so-called “Copenhagen interpretation” of quantum theory, which got its name from the strong defense for the idea at Bohr's institute in Copenhagen. Although this became a predominant viewpoint, several leading physicists, including Schrödinger and Albert Einstein (Einstein, Albert), saw the renunciation of deterministic causality as physically incomplete.

Nobel Prize
      In 1927 Heisenberg took up a professorship in Leipzig. In exchange with Dirac, Jordan, Wolfgang Pauli (Pauli, Wolfgang), and others, he embarked on a research program to create a quantum field theory, uniting quantum mechanics with relativity theory to comprehend the interaction of particles and (force) fields. Heisenberg also worked on the theory of the atomic nucleus following the discovery of the neutron in 1932, developing a model of proton and neutron interaction through what came to be known as the strong force. The 1932 Nobel Prize for Physics was not announced until November 1933, when the 1933 winners were also announced. Heisenberg was awarded the 1932 physics prize, while Schrödinger and Dirac shared the 1933 physics prize.

Heisenberg and the Nazi Party
      The same year that Heisenberg was awarded a Nobel Prize, 1933, also saw the rise to power of the National Socialist German Workers' Party ( Nazi Party). Nazi policies excluding “non-Aryans” or the politically “unreliable” from the civil service meant the dismissal or resignation of many professors and academics—including, for example, Born, Einstein, and Schrödinger and several of Heisenberg's students and colleagues in Leipzig. Heisenberg's response was mostly quiet interventions within the bureaucracy rather than overt public protest, guided by a hope that the Nazi regime or its most extreme manifestations would not last long.

      Heisenberg also became the target of ideological attacks. A coterie of Nazi-affiliated physicists promoted the idea of a “German” or “Aryan” physics, opposed to a supposedly “Jewish” influence manifested in abstract mathematical approaches—above all, relativity and quantum theories. Johannes Stark, a leader of this movement, used his Nazi Party connections to assert influence over science funding and personnel decisions. Sommerfeld had long regarded Heisenberg as his eventual successor, and in 1937 Heisenberg received a call to join the University of Munich. Thereupon the official SS journal published an article signed by Stark that called Heisenberg a “white Jew” and the “Ossietzky of physics.” (German journalist and pacifist Carl von Ossietzky (Ossietzky, Carl von), winner of the 1935 Nobel Prize for Peace, had been imprisoned in 1931 for treason for his reporting of Germany's secret rearmament efforts, given amnesty in 1932, and then rearrested and interned in a concentration camp by the Nazis in 1933.)

      Heisenberg, relying on the coincidence that his mother's family was acquainted with Heinrich Himmler (Himmler, Heinrich)'s family, sent a request to the SS chief to intervene in his behalf in acquiring the professorship in Munich. Himmler, after an investigation, decreed a compromise: Heisenberg would not succeed Sommerfeld in Munich, but he would be spared further personal attacks and (essentially) promised another prominent post in the future. Meanwhile, Stark and the Aryan physicists were for other reasons losing influence in the bureaucratic jungle of the Nazi state, particularly in the context of militarization. Amid this political turbulence, Heisenberg apparently never seriously contemplated leaving Germany, though he certainly received several offers of university appointments in the United States and elsewhere. Apparently, he was guided by a strong sense of personal duty to the profession and a national loyalty that (in his mind) transcended the particular politics of the regime.

      In 1937 Heisenberg married Elisabeth Schumacher, the daughter of an economics professor, whom he had met at a concert. Twins were born the next year, the first of eventually seven children for the couple.

      Heisenberg's main focus of work in the late 1930s was high-energy cosmic rays (cosmic ray), for which he proposed a theory of “explosion showers,” in which multiple particles were produced in a single process, in contrast to the “cascade” theory principally favoured by British and American physicists. Heisenberg also saw in cosmic ray phenomena possible evidence for his idea of a minimum length marking a lower boundary of the domain of quantum mechanics.

World War II
      The discovery of nuclear fission pushed the atomic nucleus into the centre of attention. After the German invasion of Poland in 1939, Heisenberg was drafted to work for the Army Weapons Bureau on the problem of nuclear energy. At first commuting between Leipzig and the Kaiser Wilhelm Institute (KWI) for Physics in Berlin and, after 1942, as director at the latter, Heisenberg took on a leading role in Germany's nuclear research. Given the Nazi context, this role has been enormously controversial. Heisenberg's research group was unsuccessful, of course, in producing a reactor or an atomic bomb. In explanation, some accounts have presented Heisenberg as simply incompetent; others, conversely, have suggested that he deliberately delayed or sabotaged the effort. It is clear in retrospect that there were indeed critical mistakes at several points in the research. Likewise, it is apparent that the German nuclear weapons project as a whole was not possessed of the same degree of enthusiasm that pervaded the Manhattan Project in the United States. However, factors outside Heisenberg's direct control had a more substantive role in the outcome.

      In contrast to the unified Anglo-American effort, the German project was bureaucratically fractured and cut off from international collaboration. Key materials were in short supply in Germany, to say nothing of the widespread dislocations caused by Allied bombing of the country's transportation network. Moreover, the overall strategic perspective critically affected the prioritization or de-prioritization of nuclear bomb research. After a 1942 conference with Axis scientists, German minister for armaments and war production Albert Speer (Speer, Albert) concluded that reactor research should proceed but that any bomb was unlikely to be developed in time for use in the war. By way of confirmation, the official start of the Manhattan Project in the United States also occurred in 1942, and, even with its massive effort, it could not produce an atomic bomb before Germany's surrender.

      Controversy has also swirled around Heisenberg's lectures in countries such as Denmark and The Netherlands during the war years. These trips outside of Germany were necessarily taken with the approval of German authorities and hence were perceived by colleagues in the occupied countries as indicating Nazi leaders' endorsement of Heisenberg and vice versa. Most notorious in this regard was a trip to Copenhagen in September 1941, during which Heisenberg raised the subject of nuclear weapons research in a conversation with Bohr, offending and alarming the latter, though Heisenberg later claimed that Bohr's reaction rested on some misunderstanding. The exact content of the conversation has never been clarified.

      By January 1945 the KWI for Physics was evacuated to the towns of Hechingen and Haigerloch in the province of Hohenzollern (then a Prussian enclave, now part of the state of Baden-Württemberg). In the closing days of the war, Heisenberg bicycled from there to his family's vacation house in Bavaria. There he was captured by an American military intelligence team, and eventually he was interned with several other German physicists in England. Their conversations after news of the atomic bombing of Hiroshima, Japan, initially suggested that Heisenberg had no clear sense of some basic principles of bomb design—e.g., the approximate critical mass—but within a few days he had solved many of these problems.

Postwar years
      Heisenberg was released by the British authorities in January 1946, and soon thereafter he resumed his directorship of the reconstituted Kaiser Wilhelm, which was soon renamed the Max Planck Institute for Physics, now in Göttingen. In the postwar years, Heisenberg took on a variety of roles as an administrator of and spokesman for German science within the Federal Republic of Germany, a shift to a more overtly political role that was in some contrast to his more apolitical stance before 1945. In 1949 Heisenberg became the first president of the German Research Council, a consortium of the Max Planck Society and the various West German academies of science that sought to promote German science in the international arena and to influence federal science funding through the newly elected chancellor Konrad Adenauer (Adenauer, Konrad). However, this new organization encountered conflict with the older, now re-established Emergency Association for German Science, whose approach preserved the traditional primacy of the various German states in cultural and educational matters. In 1951 the Research Council merged with the Emergency Association to form the German Research Association. Beginning in 1952, Heisenberg was instrumental in Germany's participation in the creation of the European Council for Nuclear Research ( CERN). In 1953 Heisenberg became the founding president of the third iteration of the Humboldt Foundation, a government-funded organization that provided fellowships for foreign scholars to conduct research in Germany. Despite these close connections with the federal government, Heisenberg also became an overt critic of Adenauer's policies as one of the “Göttingen 18” in 1957; following the government's announcement that it was considering equipping the army with (American-built) nuclear weapons, this group of nuclear scientists issued a manifesto protesting the plan.

      In the postwar period Heisenberg continued his search for a comprehensive quantum field theory, utilizing the “scattering matrix” approach (first introduced in 1942) and returning to the notion of a minimum universal length as a key feature. In 1958 he proposed a unified field theory—newspaper stories referred to his “world formula”—which he saw as a symmetry-based approach to the proliferation of particles then under way. However, support from the physics community was limited, particularly with the appearance of the quark model in the 1960s.In 1958 Heisenberg also finally achieved the goal of an academic position in Munich, as the Max Planck Institute for Physics moved there in that year. Heisenberg retired from his institute directorship in 1970.

Richard Beyler

Additional Reading
Biographical material is found in Armin Hermann, Werner Heisenberg, 1901–1976, trans. from German (1976); Elisabeth Heisenberg, Inner Exile: Recollections of a Life with Werner Heisenberg (1984; originally published in German, 1980); and David C. Cassidy, Uncertainty: The Life and Science of Werner Heisenberg (1992).Heisenberg's role in the German wartime atomic program is chronicled in Leslie R. Groves, Now It Can Be Told: Story of the Manhattan Project (1962, reprinted 1983); historical perspective is given by Mark Walker, German National Socialism and the Quest for Nuclear Power, 1939–1949 (1989). Alan D. Beyerchen, Scientists Under Hitler: Politics and the Physics Community in the Third Reich (1977), treats physics and politics during the National Socialist regime. Cathryn Carson, “New Models for Science in Politics: Heisenberg in West Germany,” Historical Studies in the Physical and Biological Sciences 30(1):115–171 (1999), covers Heisenberg's work in the postwar period.Studies of Heisenberg's approach in physics and philosophy of science are included in Edward M. MacKinnon, Scientific Explanation and Atomic Physics (1982); Max Jammer, The Conceptual Development of Quantum Mechanics, 2nd ed. (1989); Olivier Darrigol, From c-Numbers to q-Numbers: The Classical Analogy in the History of Quantum Theory (1992); Mara Beller, Quantum Dialogue: The Making of a Revolution (1999); and Helge Kragh, Quantum Generations: A History of Physics in the Twentieth Century (1999).Books by Heisenberg include The Physical Principles of the Quantum Theory (1930, reissued 1950; originally published in German, 1930), his most important work, containing themes of early papers amplified into a treatise; Philosophic Problems of Nuclear Science (1952, reissued 1966; originally published in German, 8th enlarged ed., 1949), a collection of his early essays; Physics and Philosophy: The Revolution in Modern Science (1958, reissued 1989), his Gifford lectures; Physics and Beyond (1971; originally published in German, 1969), a memoir of his early life; and Across the Frontiers (1974, reissued 1990; originally published in German, 1971), collected essays and occasional lectures. Heisenberg's published writings are collected in W. Blum, H.-P. Dürr, and H. Rechenberg (eds.), Collected Works (1984– ), in English, German, and French.Richard Beyler

* * *


Universalium. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Heisenberg, Werner — (1901– 76)    Scientist.    Heisenberg was born in Würtzburg, Germany. He was educated at the University of Munich and he taught at Göttingen and Leipzig. During the Second World War, he directed the German atomic bomb project. Today, however, he …   Who’s Who in Christianity

  • Heisenberg, Werner — (1901 1976)    physicist; established the famous uncertainty principle, as a result of which attempts to detail the unobservable internal movements of the atom were abandoned. Born in Würzburg, he moved to Munich in 1910 when his father was… …   Historical dictionary of Weimar Republik

  • HEISENBERG, Werner — (1901 1976)    German physicist who developed the principle of indeterminacy and worked on the QUANTUM THEORY. His principle, known as the Heisenberg or Uncertainty Principle, says that at the sub atomic level one cannot know both the speed and… …   Concise dictionary of Religion

  • Heisenberg , Werner Karl — (1901–1976) German physicist Heisenberg, whose father was the professor of Greek at the University of Munich, was born in Würzburg, Germany. He was educated at the universities of Munich and Göttingen, where in 1923 he obtained his doctorate.… …   Scientists

  • Heisenberg,Werner Karl — Hei·sen·berg (hīʹzən bûrg , bĕrk ), Werner Karl. 1901 1976. German physicist and a founder of quantum mechanics. He won a 1932 Nobel Prize for his uncertainty principle. * * * …   Universalium

  • Heisenberg, Werner —  (1901–1976) German physicist, formulator of the uncertainty principle; awarded the Nobel Prize in Physics in 1932 …   Bryson’s dictionary for writers and editors

  • Heisenberg, Werner (Karl) — born Dec. 5, 1901, Würzburg, Ger. died Feb. 1, 1976, Munich, W.Ger. German physicist. Educated at Munich and Göttingen, he taught at the University of Leipzig (1927–41) and directed the Max Planck Institute for Physics (1942–76). In 1925 he… …   Universalium

  • Heisenberg, Werner Karl — ► (1901 76) Físico alemán. Fue premio Nobel de Física en 1932, por su formulación de la mecánica cuántica en términos de matrices …   Enciclopedia Universal

  • Heisenberg, Werner (Karl) — (5 dic. 1901, Würzburg, Alemania–1 feb. 1976, Munich). Físico alemán. Educado en Munich y Gotinga, enseñó en la Universidad de Leipzig (1927–41) y dirigió el Instituto de física Max Planck (1942–76). En 1925 resolvió el problema de cómo explicar… …   Enciclopedia Universal

  • Heisenberg — Werner Heisenberg, um 1927 Werner Karl Heisenberg (* 5. Dezember 1901 in Würzburg; † 1. Februar 1976 in München) war einer der bedeutendsten Physiker des 20. Jahrhunderts und Nobelpreisträger. Er formulierte 1927 die nach ihm benannte… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”