# Heron of Alexandria

Heron of Alexandria
or Hero of Alexandria

flourished с. AD 62, Alexandria, Egypt

Greek mathematician and inventor.

He is remembered for his formula for the area of a triangle and for inventing the aeolipile, the first steam engine, which, in his design, was a forerunner of the jet engine. Of his many treatises, one contains a method for approximating the square root of a number. His writings on mechanics include discussions of the five simple machines, mechanical problems of daily life, and the construction of many kinds of engines.

* * *

▪ Greek mathematician
also called  Hero
flourished c. AD 62, Alexandria, Egypt

Greek geometer and inventor whose writings preserved for posterity a knowledge of the mathematics and engineering of Babylonia, ancient Egypt, and the Greco-Roman world.

Heron's most important geometric work, Metrica, was lost until 1896. It is a compendium, in three books, of geometric rules and formulas that Heron gathered from a variety of sources, some of them going back to ancient Babylon, on areas and volumes of plane and solid figures. Book I enumerates means of finding the area of various plane figures and the surface areas of common solids. Included is a derivation of Heron's formula (actually, Archimedes' formula) for the area A of a triangle,

A =  √(s(sa)(sb)(sc))
in which a, b, and c are the lengths of the sides of the triangle, and s is one-half the triangle's perimeter. Book I also contains an iterative method known by the Babylonians (c. 2000 BC) for approximating the square root of a number to arbitrary accuracy. (A variation on such an iterative method is frequently employed by computers today.) Book II gives methods for computing volumes of various solids, including the five regular Platonic solids (Platonic solid). Book III treats the division of various plane and solid figures into parts according to some given ratio.

Other works on geometry ascribed to Heron are Geometrica, Stereometrica, Mensurae, Geodaesia, Definitiones, and Liber Geëponicus, which contain problems similar to those in the Metrica. However, the first three are certainly not by Heron in their present form, and the sixth consists largely of extracts from the first. Akin to these works is the Dioptra, a book on land surveying; it contains a description of the diopter, a surveying instrument used for the same purposes as the modern theodolite. The treatise also contains applications of the diopter to measuring celestial distances and describes a method for finding the distance between Alexandria and Rome from the difference between local times at which a lunar eclipse would be observed at the two cities. It ends with the description of an odometer for measuring the distance a wagon or cart travels. Catoptrica (“Reflection”) exists only as a Latin translation of a work formerly thought to be a fragment of Ptolemy's Optica. In Catoptrica Heron explains the rectilinear propagation of light and the law of reflection.

Of Heron's writings on mechanics, all that remain in Greek are Pneumatica, Automatopoietica, Belopoeica, and Cheirobalistra. The Pneumatica, in two books, describes a menagerie of mechanical devices, or “toys”: singing birds, puppets, coin-operated machines, a fire engine, a water organ, and his most famous invention, the aeolipile, the first steam-powered engine. This last device consists of a sphere mounted on a boiler by an axial shaft with two canted nozzles that produce a rotary motion as steam escapes. (See the animation—>.) The Belopoeica (“Engines of War”) purports to be based on a work by Ctesibius Of Alexandria (fl. c. 270 BC). Heron's Mechanica, in three books, survives only in an Arabic translation, somewhat altered. This work is cited by Pappus of Alexandria (fl. AD 300), as is also the Baroulcus (“Methods of Lifting Heavy Weights”). Mechanica, which is closely based on the work of Archimedes, presents a wide range of engineering principles, including a theory of motion, a theory of the balance, methods of lifting and transporting heavy objects with mechanical devices, and how to calculate the centre of gravity for various simple shapes. Both Belopoeica and Mechanica contain Heron's solution of the problem of two mean proportionals—two quantities, x and y, that satisfy the ratios a:x = x:y = y:b, in which a and b are known—which can be used to solve the problem of constructing a cube with double the volume of a given cube. (For the discovery of the mean proportional relationship see Hippocrates of Chios.)

Only fragments of other treatises by Heron remain. One on water clocks is referred to by Pappus and the philosopher Proclus (AD 410–485). Another, a commentary on Euclid's Elements, is often quoted in a surviving Arabic work by Abu'l-‘Abbās al-Faḍl ibn Ḥātim al-Nayrīzī (c. 865–922).

A good summary of Heron's mathematical work is contained in Thomas L. Heath, A History of Greek Mathematics, 2 vol. (1921, reprinted 1993). An ingenious application of geometry to mathematical geography found in Heron's Dioptra is described in O. Neugebauer, A History of Ancient Mathematical Astronomy, 3 vol. (1975). Important studies of ancient technology in general and Heron in particular are A.G. Drachmann, Ktesibios, Philon, and Heron: A Study in Ancient Pneumatics (1948), and The Mechanical Technology of Greek and Roman Antiquity (1963). Heron's role as an inventor is examined in Paul Keyser, “A New Look at Heron's Steam Engine,” Archive for History of Exact Sciences, 44 (2): 107-124 (June 25, 1992). Joseph George Greenwood's 19th century English translation of Heron's Pneumatics has been published as Bennet Woodcroft (ed.), The Pneumatics of Hero of Alexandria (1851, reprinted 1971), with an introduction by Marie Boas Hall.

* * *

Universalium. 2010.

### Look at other dictionaries:

• Heron von Alexandria — auf einem Stich von 1688 Heronsball …   Deutsch Wikipedia

• Heron von Alexandria — Heron von Alexạndria,   griechischer Mechaniker und Mathematiker des 1. Jahrhunderts n. Chr.; Heron wurde im Altertum in erster Linie als Mechaniker berühmt, so z. B. mit seinem mechanischen Theater und mit sich automatisch öffnenden Tempeltüren …   Universal-Lexikon

• Heron von Alexandrien — Heron von Alexandria auf einem Stich von 1688 Heronsball …   Deutsch Wikipedia

• Heron (Name) — Heron ist ein altgriechischer männlicher Vorname. Varianten weiblich oder latinisiert: Hero Herkunft und Bedeutung Altgriechisch ὁ Ἥρων „der Tapfere, der Held“ Bekannte Namensträger Heron von Alexandria (1. Jh.), antiker Mathematiker und… …   Deutsch Wikipedia

• Heron — ist ein altgriechischer Männername, siehe Heron (Name) – dort auch zu Namensträgern ein Einschlagskrater auf dem Mond, siehe Heron (Mondkrater) Heron ist der Familienname folgender Personen: Julia Heron (1897–1977), US amerikanische… …   Deutsch Wikipedia

• Heron — von Alexandria, einer der vielseitigsten griechischen Mathematiker im Ausgang des 2. Jahrh. v. Chr., Schüler des Ktesibios, ist Verfasser einer Anzahl geometrischer und physikalischer Schriften, die leider z. T. verstümmelt und nur in… …   Meyers Großes Konversations-Lexikon

• Heron — [hir′än] fl. 3d cent. A.D.; Gr. mathematician & inventor: also called Heron of Alexandria …   English World dictionary

• Alexandria — ‏الإسكندرية‎ Alexandria …   Deutsch Wikipedia

• Heron-Methode — Das Heron Verfahren oder babylonische Wurzelziehen ist ein Rechenverfahren zur Berechnung einer Näherung der Quadratwurzel einer Zahl. Es ist ein Spezialfall des Newton Verfahrens. Die Iterationsvorschrift lautet: . Hierbei steht a für die Zahl,… …   Deutsch Wikipedia

• Heron-Formel — Mit dem Satz des Heron kann man die Fläche eines Dreiecks aus den drei Seitenlängen a, b und c berechnen. Der Satz ist nach dem Mathematiker Heron von Alexandria benannt. Der Satz lautet wie folgt: Wobei A die Fläche und s der halbe Umfang ist,… …   Deutsch Wikipedia