tricarboxylic acid cycle

tricarboxylic acid cycle
Biochem.
[1940-45]

* * *

or Krebs cycle or citric-acid cycle

Last stage of the chemical processes by which living cells obtain energy from foodstuffs.

Described by Hans Adolf Krebs in 1937, the reactions of the cycle have been shown in animals, plants, microorganisms, and fungi, and it is thus a feature of cell chemistry shared by all types of life. It is a complex series of reactions beginning and ending with the compound oxaloacetate. In addition to re-forming oxaloacetate, the cycle produces carbon dioxide and the energy-rich compound ATP. The enzymes that catalyze each step are located in mitochondria in animals, in chloroplasts in plants, and in the cell membrane in microorganisms. The hydrogen atoms and electrons that are removed from intermediate compounds formed during the cycle are channeled ultimately to oxygen in animal cells or to carbon dioxide in plant cells.

* * *

(TCA cycle),  also called  Krebs cycle  and  citric acid cycle, 

      the second stage of cellular respiration, the three-stage process by which living cells break down organic fuel molecules in the presence of oxygen to harvest the energy they need to grow and divide. This metabolic process occurs in most plants, animals, fungi, and many bacteria. In all organisms except bacteria the TCA cycle is carried out in the matrix of intracellular structures called mitochondria.

      The TCA cycle plays a central role in the breakdown, or catabolism, of organic fuel molecules—i.e., glucose and some other sugars, fatty acids, and some amino acids. Before these rather large molecules can enter the TCA cycle they must be degraded into a two-carbon compound called acetyl coenzyme A (acetyl CoA). Once fed into the TCA cycle, acetyl CoA is converted into carbon dioxide and energy.

 The TCA cycle consists of eight steps catalyzed by eight different enzymes (see Figure—>). The cycle is initiated (1) when acetyl CoA reacts with the compound oxaloacetate to form citrate and to release coenzyme A (CoA-SH). Then, in a succession of reactions, (2) citrate is rearranged to form isocitrate; (3) isocitrate loses a molecule of carbon dioxide and then undergoes oxidation to form alpha-ketoglutarate; (4) alpha-ketoglutarate loses a molecule of carbon dioxide and is oxidized to form succinyl CoA; (5) succinyl CoA is enzymatically converted to succinate; (6) succinate is oxidized to fumarate; (7) fumarate is hydrated to produce malate; and, to end the cycle, (8) malate is oxidized to oxaloacetate. Each complete turn of the cycle results in the regeneration of oxaloacetate and the formation of two molecules of carbon dioxide.

      Energy is produced in a number of steps in this cycle of reactions. In step 5, one molecule of adenosine triphosphate (ATP), the molecule that powers most cellular functions, is produced. Most of the energy obtained from the TCA cycle, however, is captured by the compounds nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) and converted later to ATP. Energy transfers occur through the relay of electrons from one substance to another, a process carried out through the chemical reactions known as oxidation and reduction, or redox reactions. (Oxidation involves the loss of electrons from a substance and reduction the addition of electrons.) For each turn of the TCA cycle, three molecules of NAD+ are reduced to NADH and one molecule of FAD is reduced to FADH2. These molecules then transfer their energy to the electron transport chain, a pathway that is part of the third stage of cellular respiration. The electron transport chain in turn releases energy so that it can be converted to ATP through the process of oxidative phosphorylation.

      The German-born British biochemist Sir Hans Adolf Krebs (Krebs, Sir Hans Adolf) proposed this cycle, which he called the citric acid cycle, in 1937. For his work he received the 1953 Nobel Prize in Physiology or Medicine. Although Krebs elucidated most of the reactions in this pathway, there were some gaps in his design. The discovery of coenzyme A in 1945 by Fritz Lipmann and Nathan Kaplan allowed researchers to work out the cycle of reactions as it is known today.

* * *


Universalium. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • tricarboxylic acid cycle — tricarboxylic acid cycle. См. цикл Кребса. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • tricarboxylic acid cycle — tri·car·box·yl·ic acid cycle .trī .kär .bäk .sil ik n KREBS CYCLE * * * the final common pathway for the oxidation to CO2 of fuel molecules, most of which enter the cycle as acetyl coenzyme A; it also provides intermediates for biosynthetic… …   Medical dictionary

  • tricarboxylic acid cycle — trikarboksirūgščių ciklas statusas T sritis chemija apibrėžtis Baltymų, riebalų ir angliavandenių oksidacinio skaidymo organizme ciklas. atitikmenys: angl. citric acid cycle; Krebs cycle; tricarboxylic acid cycle rus. цикл Кребса; цикл лимонной… …   Chemijos terminų aiškinamasis žodynas

  • tricarboxylic acid cycle — noun in all plants and animals: a series of enzymatic reactions in mitochondria involving oxidative metabolism of acetyl compounds to produce high energy phosphate compounds that are the source of cellular energy • Syn: ↑Krebs cycle, ↑Krebs… …   Useful english dictionary

  • tricarboxylic acid cycle — /traɪˌkabɒkˈsɪlɪk/ (say truy.kahbok silik) noun a cyclic system of reactions, occurring in almost all living cells, whereby pyruvic acid is metabolised to carbon dioxide, and the energy thereby liberated is trapped as chemical energy for use in… …  

  • tricarboxylic acid cycle — (= TCA cycle; citric acid cycle; Krebs cycle) The central feature of oxidative metabolism. Cyclic reactions whereby acetyl CoA is oxidized to carbon dioxide providing reducing equivalents (NADH or FADH2 ) to power the electron transport chain.… …   Dictionary of molecular biology

  • tricarboxylic acid cycle — n. Krebs cycle, citric acid cycle, sequence of chemical reactions of utmost significance in all living aerobic organisms that use oxygen as part of cellular respiration …   English contemporary dictionary

  • tricarboxylic acid cycle — (TCA) The cycle that oxidizes acetyl coenzyme A to CO2 and generates NADH and FADH2 for oxidation in the electron transport chain; the cycle also supplies carbon skeletons for biosynthesis …   Dictionary of microbiology

  • tricarboxylic acid cycle — noun Date: 1945 Krebs cycle …   New Collegiate Dictionary

  • tricarboxylic acid cycle — noun An alternative name for the Krebs cycle …   Wiktionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”