- thermometry
-
/theuhr mom"i tree/, n.1. the branch of physics dealing with the measurement of temperature.2. the science of the construction and use of thermometers.[1855-60; THERMO- + -METRY]
* * *
Science of measuring the temperature of a system or the ability of a system to transfer heat to another system.Temperature measurement is important to a wide range of activities, including manufacturing, scientific research, and medicine.* * *
the science of measuring the temperature of a system or the ability of a system to transfer heat to another system. Temperature measurement is important to a wide range of activities, including manufacturing, scientific research, and medical practice.The accurate measurement of temperature developed relatively recently in human history. The invention of the thermometer is generally credited to the Italian mathematician-physicist Galileo Galilei (Galileo) (1564–1642). In his instrument, built about 1592, the changing temperature of an inverted glass vessel produced an expansion or contraction of the air within it, which in turn changed the level of the liquid with which the vessel's long, openmouthed neck was partially filled. This general principle was perfected in succeeding years by experimenting with liquids such as mercury and by providing a scale to measure the expansion and contraction brought about in such liquids by rising and falling temperatures.By the early 18th century as many as 35 different temperature scales had been devised. The German physicist Daniel Gabriel Fahrenheit (Fahrenheit, Daniel Gabriel) in 1700–30 produced accurate mercury thermometers calibrated to a standard scale that ranged from 32°, the melting point of ice, to 96° for body temperature. The unit of temperature (degree) on the Fahrenheit temperature scale is 1/180 of the difference between the boiling (212°) and freezing points of water. The first centigrade scale (made up of 100 degrees) is attributed to the Swedish astronomer Anders Celsius (Celsius, Anders), who developed it in 1742. Celsius used 0° for the boiling point of water and 100° for the melting point of snow. This was later inverted to put 0° on the cold end and 100° on the hot end, and in that form it gained widespread use. It was known simply as the centigrade scale until in 1948 the name was changed to the Celsius temperature scale. In 1848 the British physicist William Thomson (later Lord Kelvin (Kelvin, William Thomson, Baron)) proposed a system that used the degree Celsius but was keyed to absolute zero (−273.15 °C); the unit of this scale is now known as the kelvin. The Rankine scale (see William Rankine (Rankine, William John Macquorn)) employs the Fahrenheit degree keyed to absolute zero (−459.67 °F).Any substance that somehow changes with alterations in its temperature can be used as the basic component in a thermometer. Gas thermometers work best at very low temperatures. Liquid thermometers are the most common type in use. They are simple, inexpensive, long-lasting, and able to measure a wide temperature span. The liquid is almost always mercury, sealed in a glass tube with nitrogen gas making up the rest of the volume of the tube.Electrical-resistance thermometers characteristically use platinum and operate on the principle that electrical resistance varies with changes in temperature. Thermocouples (thermocouple) are among the most widely used industrial thermometers. They are composed of two wires made of different materials joined together at one end and connected to a voltage-measuring device at the other. A temperature difference between the two ends creates a voltage that can be measured and translated into a measure of the temperature of the junction end. The bimetallic strip constitutes one of the most trouble-free and durable thermometers. It is simply two strips of different metals bonded together and held at one end. When heated, the two strips expand at different rates, resulting in a bending effect that is used to measure the temperature change.Other thermometers operate by sensing sound waves or magnetic conditions associated with temperature changes. Magnetic thermometers increase in efficiency as temperature decreases, which makes them extremely useful in measuring very low temperatures with precision. Temperatures can also be mapped, using a technique called thermography that provides a graphic or visual representation of the temperature conditions on the surface of an object or land area.* * *
Universalium. 2010.