Tchebycheff equation — /cheuh beuh shawf /, Math. a differential equation of the form (1 x2) d2y/dx2 x dy/dx + n2y = 0, where n is any nonnegative integer. Also called Chebyshev equation. [named after Pafnutii L. Chebyshev (1821 94), Russian mathematician] … Useful english dictionary
Tchebycheff polynomial — Math. a polynomial solution of the Tchebycheff equation, of the form Tn(x) = cos(n cos 1x), where n is an integer. Also called Chebyshev polynomial. [see TCHEBYCHEFF EQUATION] * * * … Universalium
Tchebycheff polynomial — Math. a polynomial solution of the Tchebycheff equation, of the form Tn(x) = cos(n cos 1x), where n is an integer. Also called Chebyshev polynomial. [see TCHEBYCHEFF EQUATION] … Useful english dictionary
Chebyshev equation — /cheuh beuh shawf /, Math. See Tchebycheff equation. * * * … Universalium
Chebyshev equation — /cheuh beuh shawf /, Math. See Tchebycheff equation … Useful english dictionary
Histoire de la fonction zêta de Riemann — En mathématiques, la fonction zêta de Riemann est définie comme la somme d une série particulière, dont les applications à la théorie des nombres et en particulier à l étude des nombres premiers se sont avérées essentielles. Cet article présente… … Wikipédia en Français
MARTINGALES (THÉORIE DES) — Le mot «martingale» évoque l’idée d’une stratégie pour gagner aux jeux de hasard. Cette notion tient une place essentielle dans toute la théorie des probabilités et s’est révélée être un langage très riche dans de nombreux domaines des… … Encyclopédie Universelle
DIOPHANTIENNES (APPROXIMATIONS) — La théorie des approximations diophantiennes concerne principalement l’approximation des irrationnels par des rationnels. Dans le cas d’un seul irrationnel, un rôle essentiel est joué par les fractions continuées (utilisées dès 1650 par Huygens… … Encyclopédie Universelle
Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… … Wikipedia
Золотарев, Егор Иванович — известный математик, проф. Петроградского университета, адъюнкт Академии Наук, родился 31 марта 1847 г. в Петрограде, первоначальное образование получил в V Петроградской гимназии. По окончании в ней курса с серебряною медалью З. поступил в 1863… … Большая биографическая энциклопедия