steam

steam
steamless, adj.
/steem/, n.
1. water in the form of an invisible gas or vapor.
2. water changed to this form by boiling, extensively used for the generation of mechanical power, for heating purposes, etc.
3. the mist formed when the gas or vapor from boiling water condenses in the air.
4. an exhalation of a vapor or mist.
5. Informal. power or energy.
6. blow off or let off steam, Informal. to give vent to one's repressed emotions, esp. by talking or behaving in an unrestrained manner: Don't take her remarks too seriously - she was just blowing off steam.
v.i.
7. to emit or give off steam or vapor.
8. to rise or pass off in the form of steam or vapor.
9. to become covered with condensed steam, as a window or other surface (often fol. by up).
10. to generate or produce steam, as in a boiler.
11. to move or travel by the agency of steam.
12. to move rapidly or evenly: He steamed out of the room.
13. Informal. to be angry or show anger.
v.t.
14. to expose to or treat with steam, as in order to heat, cook, soften, renovate, or the like.
15. to emit or exhale (steam or vapor).
16. Slang. to cause to become irked or angry (often fol. by up).
17. to convey by the agency of steam: to steam the ship safely into port.
adj.
18. heated by or heating with steam: a steam radiator.
19. propelled by or propelling with a steam engine.
20. operated by steam.
21. conducting steam: a steam line.
22. bathed with or affected by steam.
23. of or pertaining to steam.
[bef. 1000; ME steme, OE steam; c. D stoom]

* * *

Invisible gas consisting of vaporized water.

When mixed with minute droplets of water, it has a white, cloudy appearance. In nature, steam is produced by the heating of underground water by volcanic processes and is emitted from hot springs, geysers, fumaroles, and some volcanoes. Steam also can be generated on a large scale by technological systems, such as those using fossil-fuel-burning boilers and nuclear reactors. Modern industrial society relies on steam power; water is heated to steam in power plants, and the pressurized steam drives turbines that produce electric current: thermal energy is converted to mechanical energy, which is converted into electricity.

* * *

      odourless, invisible gas consisting of vaporized water. It is usually interspersed with minute droplets of water, which gives it a white, cloudy appearance. In nature, steam is produced by the heating of underground water by volcanic processes and is emitted from hot springs, geysers, fumaroles, and certain types of volcanoes. Steam also can be generated on a large scale by technological systems, as, for example, those employing fossil-fuel-burning boilers and nuclear reactors.

      Steam power constitutes an important power source for industrial society. Water is heated to steam in power plants, and the pressurized steam drives turbines that produce electrical current. The thermal energy of steam is thus converted to mechanical energy, which in turn is converted into electricity. The steam used to drive turbogenerators furnishes most of the world's electric power. Steam is also widely employed in such industrial processes as the manufacture of steel, aluminum, copper, and nickel; the production of chemicals; and the refining of petroleum. In the home, steam has long been used for cooking and heating.

 The stages that occur during the transformation of liquid water to its vapour (steam) are shown in the figure—>, in which A–E depict a cylindrical vessel containing a fixed quantity of water subject to the constant pressure exerted by a weighted (W) movable piston. A′–E′ are corresponding points on a graph showing, for a range of pressures and volumes, whether a specific mass of water is entirely liquid, entirely vapour, or a mixture of the two phases. A and A′ represent this system under conditions of pressure, volume, and temperature such that the water is entirely in the subcooled liquid state; that is, the temperature is below the boiling point of water at the prevailing pressure. The addition of heat causes the water to expand slightly and the temperature to rise until the water reaches its boiling point; at this stage, represented by B and B′, the water is said to be in the saturated (saturation) liquid state. If more heat is added, boiling begins: the liquid starts to vaporize (turn into steam), forcing the piston upward more rapidly than before, as illustrated in C.

      When liquid water and steam coexist in any proportions, the system is said to be in the two-phase region of the graph. In this region the mixture remains at the boiling-point temperature: the addition of heat merely causes more of the liquid to vaporize, and the removal of heat causes part of the vapour to condense. Though the temperature remains constant, the volume depends upon the proportions of liquid and vapour.

      If just enough heat is added to vaporize the last droplet of liquid, the entire volume will be occupied by steam. At this stage, represented by D and D′, the steam is called a saturated vapour. Because there is no more liquid to boil, the addition of more heat causes the temperature and the volume to increase. At any point to the right of D′, such as E′, the graph represents superheated steam—i.e., steam heated above its condensation temperature. As indicated in E, the volume of a quantity of superheated steam is greater than the volume of the same mass of saturated steam when both are under the same pressure.

      Steam is useful in power generation because of the unusual properties of water. The manifold hydrogen bonds among water molecules mean that water has a high boiling point and a high latent heat of vaporization compared with other liquids; that is, it takes considerable heat to turn liquid water into steam, which is available when the steam is condensed. The boiling point and the heat of vaporization both depend on ambient pressure. At standard atmospheric pressure of 101 kilopascals (14.7 pounds per square inch), water boils at 100 °C (212 °F). At higher or lower pressures, more or less molecular energy, respectively, is required to allow water molecules to escape from the liquid to the gaseous state. Correspondingly, the boiling point becomes lower or higher. The heat of vaporization, defined as the amount of energy needed to evaporate a unit mass of liquid (in engineering practice, a unit weight), also varies with pressure. At standard atmospheric pressure it is 2,260 kilojoules per kg (972 BTU [British thermal units] per pound).

* * *


Universalium. 2010.

Игры ⚽ Нужна курсовая?
Synonyms:

Look at other dictionaries:

  • Steam — Steam …   Википедия

  • Steam — Entwickler Valve Aktuelle Version Steam API: 012 Steam Paket Versionen: 1705 und 1705 (11. Oktober 2011) Betriebssystem …   Deutsch Wikipedia

  • STEAM — Стандартный интерфейс Steam. Тип Система цифровой доставки контента / DRM Разработчик ОС Windows 2000 …   Википедия

  • Steam — (st[=e]m), n. [OE. stem, steem, vapor, flame, AS. ste[ a]m vapor, smoke, odor; akin to D. stoom steam, perhaps originally, a pillar, or something rising like a pillar; cf. Gr. sty ein to erect, sty^los a pillar, and E. stand.] 1. The elastic, a[… …   The Collaborative International Dictionary of English

  • STEAM — Développeurs Valve Corporation Première version 12  …   Wikipédia en Français

  • Steam — Desarrollador Valve Corporation store.steampowered.com …   Wikipedia Español

  • steam — [stēm] n. [ME steme < OE steam, akin to Du stoom, WFris steam] 1. Obs. a vapor, fume, or exhalation 2. a) water as converted into an invisible vapor or gas by being heated to the boiling point; vaporized water: it is used for heating, cooking …   English World dictionary

  • steam — ► NOUN 1) the hot vapour into which water is converted when heated, which condenses in the air into a mist of minute water droplets. 2) the expansive force of this vapour used as a source of power for machines. 3) momentum; impetus: the dispute… …   English terms dictionary

  • steam´i|ly — steam|y «STEE mee», adjective, steam|i|er, steam|i|est. 1. of steam; like steam: »a steamy vapor. 2. full of steam; giving off steam; rising in steam: »a steamy room …   Useful english dictionary

  • steam|y — «STEE mee», adjective, steam|i|er, steam|i|est. 1. of steam; like steam: »a steamy vapor. 2. full of steam; giving off steam; rising in steam: »a steamy room …   Useful english dictionary

  • Steam — (st[=e]m), v. t. 1. To exhale. [Obs.] Spenser. [1913 Webster] 2. To expose to the action of steam; to apply steam to for softening, dressing, or preparing; as, to steam wood; to steamcloth; to steam food, etc. [1913 Webster] …   The Collaborative International Dictionary of English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”