Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… … Wikipedia
riemann surface — noun Usage: usually capitalized R Etymology: after G.F.B. Riemann : a multilayered surface in the theory of complex functions on which a multivalued complex function can be treated as a single valued function of a complex variable * * * Math. a… … Useful english dictionary
Riemann surface — noun a one dimensional complex manifold; a generalization of the complex plane … Wiktionary
Compact Riemann surface — In mathematics, a compact Riemann surface is a complex manifold of dimension one that is a compact space. Riemann surfaces are generally classified first into the compact (those that are closed manifolds) and the open (the rest, which from the… … Wikipedia
Riemann sphere — The Riemann sphere can be visualized as the complex number plane wrapped around a sphere (by some form of stereographic projection – details are given below). In mathematics, the Riemann sphere (or extended complex plane), named after the 19th… … Wikipedia
Surface — This article discusses surfaces from the point of view of topology. For other uses, see Differential geometry of surfaces, algebraic surface, and Surface (disambiguation). An open surface with X , Y , and Z contours shown. In mathematics,… … Wikipedia
Riemann–Roch theorem — In mathematics, specifically in complex analysis and algebraic geometry, the Riemann–Roch theorem is an important tool in the computation of the dimension of the space of meromorphic functions with prescribed zeroes and allowed poles. It relates… … Wikipedia
Riemann hypothesis — The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011 … Wikipedia
Riemann, Bernhard — ▪ German mathematician in full Georg Friedrich Bernhard Riemann born September 17, 1826, Breselenz, Hanover [Germany] died July 20, 1866, Selasca, Italy German mathematician whose profound and novel approaches to the study of geometry laid the … Universalium
Riemann mapping theorem — In complex analysis, the Riemann mapping theorem states that if U is a simply connected open subset of the complex number plane Bbb C which is not all of Bbb C, then there exists a biholomorphic (bijective and holomorphic) mapping f, from U, onto … Wikipedia