- orthocenter
-
/awr"theuh sen'teuhr/, n. Geom.the point of intersection of the three altitudes of a triangle.[1865-70; ORTHO- + CENTER]
* * *
Universalium. 2010.
* * *
Universalium. 2010.
Orthocenter — Or tho*cen ter, n. [Ortho + center.] (Geom.) That point in which the three perpendiculars let fall from the angles of a triangle upon the opposite sides, or the sides produced, mutually intersect. [1913 Webster] … The Collaborative International Dictionary of English
orthocenter — [ôr′thə sent΄ər] n. Geom. the point where the three altitudes of a triangle intersect … English World dictionary
orthocenter — noun Etymology: International Scientific Vocabulary Date: 1869 the common intersection of the three altitudes of a triangle or their extensions or of the several altitudes of a polyhedron provided these latter exist and meet in a point … New Collegiate Dictionary
orthocenter — noun the intersection of the three lines that can be drawn flowing from the three corners of a triangle to a point along the opposite side where each line intersect that side at a 90 degree angle; in an acute triangle, it is inside the triangle;… … Wiktionary
orthocenter — n. (Geometry) point where the three altitudes of a triangle cross each other … English contemporary dictionary
orthocenter — or·tho·center … English syllables
orthocenter — or•tho•cen•ter [[t]ˈɔr θəˌsɛn tər[/t]] n. math. the point of intersection of the three altitudes of a triangle • Etymology: 1865–70 … From formal English to slang
orthocenter — … Useful english dictionary
Altitude (triangle) — Orthocenter and Orthocentre redirect here. For the orthocentric system, see Orthocentric system. Three altitudes intersecting at the orthocenter In geometry, an altitude of a triangle is a straight line through a vertex and perpendicular to (i.e … Wikipedia
Ортоцентрическая система — Ортоцентр (от греч. ορθοξ прямой) точка пересечения высот треугольника или их продолжений. Традиционно обозначается латинской буквой H. В зависимости от вида треугольника ортоцентр может находится внутри треугольника (в остроугольных), вне его (в … Википедия