- nonorientable
-
adj.
* * *
Universalium. 2010.
* * *
Universalium. 2010.
nonorientable — adjective Not able to be oriented. Ant: orientable … Wiktionary
nonorientable — adj … Useful english dictionary
Surface — This article discusses surfaces from the point of view of topology. For other uses, see Differential geometry of surfaces, algebraic surface, and Surface (disambiguation). An open surface with X , Y , and Z contours shown. In mathematics,… … Wikipedia
Orientability — For orientation of vector spaces, see orientation (mathematics). For other uses, see Orientation (disambiguation). The torus is an orientable surface … Wikipedia
Elliptic geometry — (sometimes known as Riemannian geometry) is a non Euclidean geometry, in which, given a line L and a point p outside L, there exists no line parallel to L passing through p.Elliptic geometry, like hyperbolic geometry, violates Euclid s parallel… … Wikipedia
Volume form — In mathematics, a volume form is a nowhere zero differential n form on an n manifold. Every volume form defines a measure on the manifold, and thus a means to calculate volumes in a generalized sense. A manifold has a volume form if and only if… … Wikipedia
Systolic geometry — In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner, and developed by Mikhail Gromov and others, in its arithmetic, ergodic, and topological manifestations.… … Wikipedia
Non-orientable wormhole — In wormhole theory, a non orientable wormhole is a wormhole connection that appears to reverse the chirality of anything passed through it. It is related to the twisted connections normally used to construct a Möbius strip or Klein bottle. In… … Wikipedia
Loewner's torus inequality — In differential geometry, Loewner s torus inequality is an inequality due to Charles Loewner for the systole of an arbitrary Riemannian metric on the 2 torus.tatementIn 1949 Charles Loewner proved that every metric on the 2 torus mathbb T^2… … Wikipedia
Pu's inequality — [ Roman Surface representing RP2 in R3] In differential geometry, Pu s inequality is an inequality proved by P. M. Pu for the systole of an arbitrary Riemannian metric on the real projective plane RP2.tatementA student of Charles Loewner s, P.M.… … Wikipedia