Human Genome Project

Human Genome Project
a federally funded U.S. scientific project to identify both the genes and the entire sequence of DNA base pairs that make up the human genome.
[1985-90]

* * *

U.S. research effort initiated in 1990 by the U.S. Department of Energy and the National Institutes of Health to analyze the DNA of human beings.

The project, intended to be completed in 15 years, proposed to identify the chromosomal location of every human gene, to determine each gene's precise chemical structure in order to show its function in health and disease, and to determine the precise sequence of nucleotides of the entire set of genes (the genome). Another project was to address the ethical, legal, and social implications of the information obtained. The information gathered will be the basic reference for research in human biology and will provide fundamental insights into the genetic basis of human disease. The new technologies developed in the course of the project will be applicable in numerous biomedical fields. In 2000 the government and the private corporation Celera Genomics jointly announced that the project had been virtually completed, five years ahead of schedule.

* * *

▪ scientific project
Introduction
  an international collaboration that successfully determined, stored, and rendered publicly available the sequences of almost all the genetic content of the chromosomes (chromosome) of the human organism, otherwise known as the human genome.

 The Human Genome Project (HGP), which operated from 1990 to 2003, provided researchers with basic information about the sequences of the three billion chemical base pairs (i.e., adenine [A], thymine [T], guanine [G], and cytosine [C]) that make up human genomic DNA (deoxyribonucleic acid). The Human Genome Project was further intended to improve the technologies needed to interpret and analyze genomic sequences, to identify all the approximately 25,000 genes (gene) encoded in human DNA, and to address the ethical, legal, and social implications that might arise from defining the entire human genomic sequence.

Timeline of the Human Genome Project
      Prior to the Human Genome Project, the base sequences of numerous human genes had been determined through contributions made by many individual scientists. However, the vast majority of the human genome remained unexplored, and researchers, having recognized the necessity and value of having at hand the basic information of the human genomic sequence, were beginning to search for ways to uncover this information more quickly. Because the Human Genome Project required billions of dollars that would inevitably be taken away from traditional biomedical research, many scientists, politicians, and ethicists became involved in vigorous debates over the merits, risks, and relative costs of sequencing the entire human genome in one concerted undertaking. Despite the controversy, the Human Genome Project was initiated in 1990 under the leadership of American geneticist Francis Collins, with support from the U.S. Department of Energy and the National Institutes of Health (NIH). The effort was soon joined by scientists from around the world. Moreover, a series of technical advances in the sequencing process itself and in the computer hardware and software used to track and analyze the resulting data enabled rapid progress of the project.

      Technological advance, however, was only one of the forces driving the pace of discovery of the Human Genome Project. In 1998 a private-sector enterprise, Celera Genomics, headed by American biochemist and former NIH scientist J. Craig Venter, began to compete with and potentially undermine the publicly funded Human Genome Project. At the heart of the competition was the prospect of gaining control over potential patents (patent) on the genome sequence, which was considered a pharmaceutical treasure trove. Although the legal and financial reasons remain unclear, the rivalry between Celera and the NIH ended when they joined forces, thus speeding completion of the rough draft sequence of the human genome. The completion of the rough draft was announced in June 2000 by Collins and Venter. For the next three years, the rough draft sequence was refined, extended, and further analyzed, and in April 2003, coinciding with the 50th anniversary of the publication that described the double-helical structure of DNA, written by British biophysicist Francis Crick (Crick, Francis Harry Compton) and American geneticist and biophysicist James D. Watson (Watson, James Dewey), the Human Genome Project was declared complete.

Science behind the Human Genome Project
      To appreciate the magnitude, challenge, and implications of the Human Genome Project, it is important first to consider the foundation of science upon which it was based—the fields of classical, molecular, and human genetics. Classical genetics is considered to have begun in the mid-1800s with the work of Austrian botanist, teacher, and Augustinian prelate Gregor Mendel (Mendel, Gregor), who defined the basic laws of genetics in his studies of the garden pea (Pisum sativum). Mendel succeeded in explaining that, for any given gene, offspring inherit from each parent one form, or allele, of a gene. In addition, the allele that an offspring inherits from a parent for one gene is independent of the allele inherited from that parent for another gene.

 Mendel's basic laws of genetics were expanded upon in the early 20th century when molecular geneticists began conducting research using model organisms such as Drosophila melanogaster (Drosophila) (also called the vinegar fly or fruit fly) that provided a more comprehensive view of the complexities of genetic transmission. For example, molecular genetics studies demonstrated that two alleles can be codominant (characteristics of both alleles of a gene are expressed) and that not all traits are defined by single genes; in fact, many traits reflect the combined influences of numerous genes. The field of molecular genetics emerged from the realization that DNA and RNA (ribonucleic acid) constitute the genetic material in all living things. In physical terms, a gene is a discrete stretch of nucleotides (nucleotide) within a DNA molecule, with each nucleotide containing an A, G, T, or C base unit. It is the specific sequence of these bases that encodes the information contained in the gene and that is ultimately translated into a final product, a molecule of protein or in some cases a molecule of RNA. The protein or RNA product may have a structural role or a regulatory role, or it may serve as an enzyme to promote the formation or metabolism of other molecules, including carbohydrates (carbohydrate) and lipids (lipid). All these molecules work in concert to maintain the processes required for life.

      Studies in molecular genetics led to studies in human genetics (genetics, human) and the consideration of the ways in which traits in humans are inherited. For example, most traits in humans and other species result from a combination of genetic and environmental influences. In addition, some genes, such as those encoded at neighbouring spots on a single chromosome, tend to be inherited together, rather than independently, whereas other genes, namely those encoded on the mitochondrial genome, are inherited only from the mother, and yet other genes, encoded on the Y chromosome, are passed only from fathers to sons.

Advances based on the Human Genome Project
      Advances in genetics and genomics continue to emerge. Two important advances include the International HapMap Project and the initiation of large-scale comparative genomics studies, both of which have been made possible by the availability of databases of genomic sequences of humans, as well as the availability of databases of genomic sequences of a multitude of other species.

      The International HapMap Project is a collaborative effort between Japan, the United Kingdom, Canada, China, Nigeria, and the United States in which the goal is to identify and catalog genetic similarities and differences between individuals representing four major human populations derived from the continents of Africa, Europe, and Asia. The identification of genetic variations called polymorphisms that exist in DNA sequences among populations allows researchers to define haplotypes, markers that distinguish specific regions of DNA in the human genome. Association studies of the prevalence of these haplotypes in control and patient populations can be used to help identify potentially functional genetic differences that predispose an individual toward disease or, alternatively, that may protect an individual from disease. Similarly, linkage studies of the inheritance of these haplotypes in families affected by a known genetic trait can also help to pinpoint the specific gene or genes that underlie or modify that trait. Association and linkage studies have enabled the identification of numerous disease genes and their modifiers.

      In contrast to the International HapMap Project, which compares genomic sequences within one species, comparative genomics is the study of similarities and differences between different species. In recent years a staggering number of full or almost full genome sequences from different species have been determined and deposited in public databases such as NIH's Entrez Genome database. By comparing these sequences, often using a software tool called BLAST (Basic Local Alignment Search Tool), researchers are able to identify degrees of similarity and divergence between the genes and genomes of related or disparate species. The results of these studies have illuminated the evolution of species and of genomes. Such studies have also helped to draw attention to highly conserved regions of noncoding sequences of DNA that were originally thought to be nonfunctional because they do not contain base sequences that are translated into protein. However, some noncoding regions of DNA have been highly conserved and may play key roles in human evolution.

Impacts of the Human Genome Project

Impact on medicine
 The public availability of a complete human genome sequence represented a defining moment for both the biomedical community and for society. In the years since completion of the Human Genome Project, the human genome database, together with other publicly available resources such as the HapMap database, has enabled the identification of a variety of genes that are associated with disease. This, in turn, has enabled more objective and accurate diagnoses, in some cases even before the onset of overt clinical symptoms. Association and linkage studies have identified additional genetic influences that modify the development or outcome for both rare and common diseases. The recognition that human genomes may influence everything from disease risk to physiological response to medications has led to the emergence of the concept of personalized medicine—the idea that knowledge of a patient's entire genome sequence will give health care providers the ability to deliver the most appropriate and effective care for that patient. Indeed, continuing advances in DNA sequencing technology promise to lower the cost of sequencing an individual's entire genome to that of other, relatively inexpensive, diagnostic tests.

Impact on law and the social sciences
      The Human Genome Project affects fields beyond biomedical science in ways that are both tangible and profound. For example, human genomic sequence information, analyzed through a system called CODIS (Combined DNA Index System), has revolutionized the field of forensics (forensic medicine), enabling positive identification of individuals from extremely tiny samples of biological substances, such as saliva on the seal of an envelope, a few hairs, or a spot of dried blood or semen. Indeed, spurred by high rates of recidivism (the tendency of a previously convicted criminal to return to prior criminal behaviour despite punishment or imprisonment), some governments have even instituted the policy of banking DNA samples from all convicted criminals in order to facilitate the identification of perpetrators of future crimes. While politically controversial, this policy has proved highly effective. By the same token, innocent men and women have been exonerated on the basis of DNA evidence, sometimes decades after wrongful convictions for crimes they did not commit.

      Comparative DNA sequence analyses of samples representing distinct modern populations of humans have revolutionized the field of anthropology. For example, by following DNA sequence variations present on mitochondrial DNA, which is maternally inherited, and on the Y chromosome, which is paternally inherited, molecular anthropologists have confirmed Africa as the cradle of the modern human species, Homo sapiens, and have identified the waves of human migration that emerged from Africa over the last 60,000 years to populate the other continents of the world. Databases that map DNA sequence variations that are common in some populations but rare in others have enabled so-called molecular genealogists to trace the continent or even subcontinent of origin of given families or individuals. Perhaps more important than helping to trace the roots of humans and to see the differences between populations of humans, DNA sequence information has enabled recognition of how closely related one population of humans is to another and how closely related humans are to the multitude of other species that inhabit the Earth.

Judith Fridovich-Keil

* * *


Universalium. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Human Genome Project — The Human Genome Project (HGP) was an international scientific research project with a primary goal to determine the sequence of chemical base pairs which make up DNA and to identify the approximately 25,000 genes of the human genome from both a… …   Wikipedia

  • Human Genome Project — Das Humangenomprojekt (HGP, engl. Human Genome Project) wurde im Herbst 1990 mit dem Ziel gegründet, das Genom des Menschen vollständig zu entschlüsseln, d. h. die Abfolge der Basenpaare in der menschlichen DNA auf ihren einzelnen Chromosomen… …   Deutsch Wikipedia

  • Human Genome Project — a massive international research project to elucidate the entire sequence of genes on all the human chromosomes. The human genome comprises some 3000 million nucleotide base pairs (see DNA) forming about 30,000 genes, distributed between 23 pairs …   Medical dictionary

  • Human Genome Project — noun an international scientific project to identify and map the genes of the human genome, based in the US; begun in 1990; first complete results released in 2003 with continuing analysis; potential applications in medicine and other areas.… …  

  • Human Genome Project, the — Human Genome ,Project, the a plan to discover and record everything that can be known about human DNA (=genetic material) by examining the order and structure of genes …   Usage of the words and phrases in modern English

  • Human Genome Project:Road Map for Science and Medicine — ▪ 2001 Introduction by Judith L. Fridovich Keil       Certain to rank among the all time landmarks of human technical achievement, the completion of a rough draft of the sequence of the human nuclear genome was announced in June 2000. Its… …   Universalium

  • Human Genome Project — Projet génome humain Pour les articles homonymes, voir PGH. Le Projet Génome Humain est un projet entrepris en 1990 dont la mission était d établir le séquençage complet de l ADN du génome humain. Son achèvement a été annoncé en avril 2003[1]. Le …   Wikipédia en Français

  • Human Genome Project — International effort aimed at identifying and sequencing (ordering) all of the bases in the human genome. American participation in this monumental undertaking has been supported by funds from the National Institutes of Health (NIH) and the… …   Medical dictionary

  • Human Genome Project — a massive international research project to elucidate the entire sequence of genes on all the human chromosomes. The human genome comprises some 3000 million nucleotide base pairs (see DNA) forming about 30,000 genes, distributed between 23 pairs …   The new mediacal dictionary

  • Human Genome Project — Hu′man Ge′nome Proj ect n. gen a scientific project to identify both the genes and the entire sequence of DNA base pairs that make up the human genome • Etymology: 1985–90 …   From formal English to slang

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”