- extended complex plane
-
Math.the complex plane with a point at infinity added.
* * *
Universalium. 2010.
* * *
Universalium. 2010.
extended complex plane — Math. the complex plane with a point at infinity added … Useful english dictionary
Complex plane — Geometric representation of z and its conjugate in the complex plane. The distance along the light blue line from the origin to the point z is the modulus or absolute value of z. The angle φ is the argument of z. In mathematics … Wikipedia
Complex number — A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the square root of –1. A complex… … Wikipedia
Complex space — In mathematics, n dimensional complex space is a multi dimensional generalisation of the complex numbers, which have both real and imaginary parts or dimensions. The n dimensional complex space can be seen as n cartesian products of the complex… … Wikipedia
Extended real number line — Positive infinity redirects here. For the band, see Positive Infinity. In mathematics, the affinely extended real number system is obtained from the real number system R by adding two elements: +∞ and −∞ (read as positive infinity and negative… … Wikipedia
Complex logarithm — A single branch of the complex logarithm. The hue of the color is used to show the arg (polar coordinate angle) of the complex logarithm. The saturation (intensity) of the color is used to show the modulus of the complex logarithm. The page with… … Wikipedia
Periodic points of complex quadratic mappings — This article describes periodic points of some complex quadratic map. This theory is applied in relation with the theories of Fatou and Julia sets.DefinitionsLet :f c(z)=z^2+c, where z and c are complex valued. (This f is the complex quadratic… … Wikipedia
Upper half-plane — In mathematics, the upper half plane H is the set of complex numbers with positive imaginary part y: The term is associated with a common visualization of complex numbers with points in the plane endowed with Cartesian coordinates, with the Y… … Wikipedia
Liouville's theorem (complex analysis) — In complex analysis, Liouville s theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that | f ( z )| ≤ M for all… … Wikipedia
Möbius plane — A Möbius plane or inversive plane is a particular kind of plane geometry, built upon some affine planes by adding one point, called the ideal point or point at infinity. In a Möbius plane straight lines are a special case of circles; they are the … Wikipedia